Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Nov;41(11):2383–2388. doi: 10.1128/aac.41.11.2383

Human immunodeficiency virus type 1 proteinase resistance to symmetric cyclic urea inhibitor analogs.

U Nillroth 1, L Vrang 1, P O Markgren 1, J Hultén 1, A Hallberg 1, U H Danielson 1
PMCID: PMC164132  PMID: 9371337

Abstract

Resistant virus was isolated from virus propagated in cell culture in the presence of the human immunodeficiency virus type 1 (HIV-1) proteinase inhibitor DMP 323, Ro 31-8959, or A-75925. The proteinase gene of resistant virus was sequenced, and key mutations (G48V, V82A, I84V, L90M, and G48V/L90M) were introduced into clones used for the expression, purification, and further characterization of the enzyme. The mutant enzymes were all less active than the wild-type enzyme, as judged by k(cat) and k(cat)/Km values. L90M had a lower Km than the wild type, whereas the G48V/L90M double mutant had an increased Km compared with that of the wild type, contributing to a 10-fold reduction in the k(cat)/Km. Vitality values were used to show that the enzyme of the I84V mutant is the enzyme most resistant to the two cyclic urea inhibitors DMP 323 and AHA 008. Virus with the same mutation is also resistant, although the double mutation L10F/I84V confers even greater resistance. All of these mutants are more resistant to DMP 323 than to AHA 008. The resistance of the I84V mutant may be attributed to a loss of van der Waals interactions with the inhibitor, since the larger amino acid side chain involved in the interaction is replaced by a smaller side chain. This is supported by the lower level of resistance to AHA 008 that was observed. The phenyl groups of AHA 008 should protrude deeper into the S1 and S1' subsites than those of the smaller compound DMP 323, reducing the loss of interaction energy. These results reveal that small structural modifications of inhibitors that do not affect the inhibitory effect on wild-type virus can influence the inhibition of resistant strains. This is of importance for optimizing drugs with respect to their potency and resistance.

Full Text

The Full Text of this article is available as a PDF (198.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coffin J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995 Jan 27;267(5197):483–489. doi: 10.1126/science.7824947. [DOI] [PubMed] [Google Scholar]
  2. Condra J. H., Schleif W. A., Blahy O. M., Gabryelski L. J., Graham D. J., Quintero J. C., Rhodes A., Robbins H. L., Roth E., Shivaprakash M. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature. 1995 Apr 6;374(6522):569–571. doi: 10.1038/374569a0. [DOI] [PubMed] [Google Scholar]
  3. Craig J. C., Duncan I. B., Hockley D., Grief C., Roberts N. A., Mills J. S. Antiviral properties of Ro 31-8959, an inhibitor of human immunodeficiency virus (HIV) proteinase. Antiviral Res. 1991 Dec;16(4):295–305. doi: 10.1016/0166-3542(91)90045-s. [DOI] [PubMed] [Google Scholar]
  4. Deeks S. G., Smith M., Holodniy M., Kahn J. O. HIV-1 protease inhibitors. A review for clinicians. JAMA. 1997 Jan 8;277(2):145–153. [PubMed] [Google Scholar]
  5. Doyon L., Croteau G., Thibeault D., Poulin F., Pilote L., Lamarre D. Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J Virol. 1996 Jun;70(6):3763–3769. doi: 10.1128/jvi.70.6.3763-3769.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gulnik S. V., Suvorov L. I., Liu B., Yu B., Anderson B., Mitsuya H., Erickson J. W. Kinetic characterization and cross-resistance patterns of HIV-1 protease mutants selected under drug pressure. Biochemistry. 1995 Jul 25;34(29):9282–9287. doi: 10.1021/bi00029a002. [DOI] [PubMed] [Google Scholar]
  7. Hodge C. N., Aldrich P. E., Bacheler L. T., Chang C. H., Eyermann C. J., Garber S., Grubb M., Jackson D. A., Jadhav P. K., Korant B. Improved cyclic urea inhibitors of the HIV-1 protease: synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450. Chem Biol. 1996 Apr;3(4):301–314. doi: 10.1016/s1074-5521(96)90110-6. [DOI] [PubMed] [Google Scholar]
  8. Hultén J., Bonham N. M., Nillroth U., Hansson T., Zuccarello G., Bouzide A., Aqvist J., Classon B., Danielson U. H., Karlén A. Cyclic HIV-1 protease inhibitors derived from mannitol: synthesis, inhibitory potencies, and computational predictions of binding affinities. J Med Chem. 1997 Mar 14;40(6):885–897. doi: 10.1021/jm960728j. [DOI] [PubMed] [Google Scholar]
  9. Karlström A. R., Levine R. L. Copper inhibits the protease from human immunodeficiency virus 1 by both cysteine-dependent and cysteine-independent mechanisms. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5552–5556. doi: 10.1073/pnas.88.13.5552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kempf D. J., Norbeck D. W., Codacovi L., Wang X. C., Kohlbrenner W. E., Wideburg N. E., Paul D. A., Knigge M. F., Vasavanonda S., Craig-Kennard A. Structure-based, C2 symmetric inhibitors of HIV protease. J Med Chem. 1990 Oct;33(10):2687–2689. doi: 10.1021/jm00172a002. [DOI] [PubMed] [Google Scholar]
  11. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lam P. Y., Jadhav P. K., Eyermann C. J., Hodge C. N., Ru Y., Bacheler L. T., Meek J. L., Otto M. J., Rayner M. M., Wong Y. N. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science. 1994 Jan 21;263(5145):380–384. doi: 10.1126/science.8278812. [DOI] [PubMed] [Google Scholar]
  13. Lin Y., Lin X., Hong L., Foundling S., Heinrikson R. L., Thaisrivongs S., Leelamanit W., Raterman D., Shah M., Dunn B. M. Effect of point mutations on the kinetics and the inhibition of human immunodeficiency virus type 1 protease: relationship to drug resistance. Biochemistry. 1995 Jan 31;34(4):1143–1152. doi: 10.1021/bi00004a007. [DOI] [PubMed] [Google Scholar]
  14. Maschera B., Furfine E., Blair E. D. Analysis of resistance to human immunodeficiency virus type 1 protease inhibitors by using matched bacterial expression and proviral infection vectors. J Virol. 1995 Sep;69(9):5431–5436. doi: 10.1128/jvi.69.9.5431-5436.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roberts N. A. Drug-resistance patterns of saquinavir and other HIV proteinase inhibitors. AIDS. 1995 Dec;9 (Suppl 2):27–S32. [PubMed] [Google Scholar]
  16. Tisdale M., Myers R. E., Maschera B., Parry N. R., Oliver N. M., Blair E. D. Cross-resistance analysis of human immunodeficiency virus type 1 variants individually selected for resistance to five different protease inhibitors. Antimicrob Agents Chemother. 1995 Aug;39(8):1704–1710. doi: 10.1128/aac.39.8.1704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weislow O. S., Kiser R., Fine D. L., Bader J., Shoemaker R. H., Boyd M. R. New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral activity. J Natl Cancer Inst. 1989 Apr 19;81(8):577–586. doi: 10.1093/jnci/81.8.577. [DOI] [PubMed] [Google Scholar]
  18. von der Helm K., Gürtler L., Eberle J., Deinhardt F. Inhibition of HIV replication in cell culture by the specific aspartic protease inhibitor pepstatin A. FEBS Lett. 1989 Apr 24;247(2):349–352. doi: 10.1016/0014-5793(89)81368-7. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES