Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Nov;41(11):2389–2393. doi: 10.1128/aac.41.11.2389

Characterization of fluoroquinolone-induced Achilles tendon toxicity in rats: comparison of toxicities of 10 fluoroquinolones and effects of anti-inflammatory compounds.

Y Kashida 1, M Kato 1
PMCID: PMC164133  PMID: 9371338

Abstract

Fluoroquinolone antibacterial agents have been reported to induce tendon lesions in juvenile rats. In the present study, we characterized fluoroquinolone-induced Achilles tendon lesions by comparing the effects of 10 fluoroquinolones and examining the potential of one of these antimicrobial agents, pefloxacin, to induce tendon lesions when coadministered with one of nine anti-inflammatory compounds. Among the 10 fluoroquinolones tested, fleroxacin and pefloxacin were the most toxic, inducing lesions at a dose of 100 mg/kg of body weight or more, while lomefloxacin, levofloxacin, and ofloxacin or sparfloxacin and enoxacin induced lesions at 300 mg/kg or more and 900 mg/kg, respectively. In contrast, norfloxacin, ciprofloxacin, and tosufloxacin had no effect even at the high dose of 900 mg/kg. The severity of the Achilles tendon lesions appeared to correlate with the structure of the substituent at the seventh position. Furthermore, pefloxacin-induced tendon lesions were inhibited by coadministration with dexamethasone and N-nitro-L-arginine methyl ester. Phenidone (1-phenyl-3-pyrazolidinone) and 2-(12-hydroxydodeca-5,10-diynyl)3,5,6-trimethyl-1,4-benzoqui none (AA861) also decreased the incidence of tendon lesions. In contrast, catalase, dimethyl sulfoxide, indomethacin, pyrilamine, and cimetidine did not modify these tendon lesions. These results suggest that nitric oxide and 5-lipoxigenase products partly mediate fluoroquinolone-induced tendon lesions.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey R. R., Kirk J. A., Peddie B. A. Norfloxacin-induced rheumatic disease. N Z Med J. 1983 Jul 27;96(736):590–590. [PubMed] [Google Scholar]
  2. Black K. L., Hoff J. T. Leukotrienes increase blood-brain barrier permeability following intraparenchymal injections in rats. Ann Neurol. 1985 Sep;18(3):349–351. doi: 10.1002/ana.410180313. [DOI] [PubMed] [Google Scholar]
  3. Boughton-Smith N. K., Evans S. M., Whittle B. J., Moncada S. Induction of nitric oxide synthase in rat intestine and its association with tissue injury. Agents Actions. 1993;38(Spec No):C125–C126. doi: 10.1007/BF01991159. [DOI] [PubMed] [Google Scholar]
  4. Curran R. D., Billiar T. R., Stuehr D. J., Hofmann K., Simmons R. L. Hepatocytes produce nitrogen oxides from L-arginine in response to inflammatory products of Kupffer cells. J Exp Med. 1989 Nov 1;170(5):1769–1774. doi: 10.1084/jem.170.5.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Domagala J. M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother. 1994 Apr;33(4):685–706. doi: 10.1093/jac/33.4.685. [DOI] [PubMed] [Google Scholar]
  6. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  7. Higgs G. A., Moncada S., Vane J. R. Eicosanoids in inflammation. Ann Clin Res. 1984;16(5-6):287–299. [PubMed] [Google Scholar]
  8. Hughes S. R., Williams T. J., Brain S. D. Evidence that endogenous nitric oxide modulates oedema formation induced by substance P. Eur J Pharmacol. 1990 Dec 4;191(3):481–484. doi: 10.1016/0014-2999(90)94184-y. [DOI] [PubMed] [Google Scholar]
  9. Jorgensen C., Anaya J. M., Didry C., Canovas F., Serre I., Baldet P., Ribard P., Kahn M. F., Sany J. Arthropathies et tendinopathie achilléenne induites par la péfloxacine. A propos d'une observation. Rev Rhum Mal Osteoartic. 1991 Oct;58(9):623–625. [PubMed] [Google Scholar]
  10. Kato M., Takada S., Kashida Y., Nomura M. Histological examination on Achilles tendon lesions induced by quinolone antibacterial agents in juvenile rats. Toxicol Pathol. 1995 May-Jun;23(3):385–392. doi: 10.1177/019262339502300315. [DOI] [PubMed] [Google Scholar]
  11. Kotyuk B., Raychaudhuri A., DiPasquale G. Effect of anti-inflammatory compounds on edema formation and myeloperoxidase activity in the arachidonic acid-induced ear model in the mouse. Agents Actions. 1993;39(Spec No):C46–C48. doi: 10.1007/BF01972716. [DOI] [PubMed] [Google Scholar]
  12. Lee W. T., Collins J. F. Ciprofloxacin associated bilateral achilles tendon rupture. Aust N Z J Med. 1992 Oct;22(5):500–500. [PubMed] [Google Scholar]
  13. Lippe I. T., Stabentheiner A., Holzer P. Role of nitric oxide in the vasodilator but not exudative component of mustard oil-induced inflammation in rat skin. Agents Actions. 1993;38(Spec No):C22–C24. doi: 10.1007/BF01991125. [DOI] [PubMed] [Google Scholar]
  14. MAJNO G., PALADE G. E., SCHOEFL G. I. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961 Dec;11:607–626. doi: 10.1083/jcb.11.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McEwan S. R., Davey P. G. Ciprofloxacin and tenosynovitis. Lancet. 1988 Oct 15;2(8616):900–900. doi: 10.1016/s0140-6736(88)92489-0. [DOI] [PubMed] [Google Scholar]
  17. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  18. Montay G., Goueffon Y., Roquet F. Absorption, distribution, metabolic fate, and elimination of pefloxacin mesylate in mice, rats, dogs, monkeys, and humans. Antimicrob Agents Chemother. 1984 Apr;25(4):463–472. doi: 10.1128/aac.25.4.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pierfitte C., Royer R. J. Tendon disorders with fluoroquinolones. Therapie. 1996 Jul-Aug;51(4):419–420. [PubMed] [Google Scholar]
  20. Radomski M. W., Palmer R. M., Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A. 1990 Dec;87(24):10043–10047. doi: 10.1073/pnas.87.24.10043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rees D. D., Palmer R. M., Schulz R., Hodson H. F., Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990 Nov;101(3):746–752. doi: 10.1111/j.1476-5381.1990.tb14151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ribard P., Audisio F., Kahn M. F., De Bandt M., Jorgensen C., Hayem G., Meyer O., Palazzo E. Seven Achilles tendinitis including 3 complicated by rupture during fluoroquinolone therapy. J Rheumatol. 1992 Sep;19(9):1479–1481. [PubMed] [Google Scholar]
  23. Royer R. J., Pierfitte C., Netter P. Features of tendon disorders with fluoroquinolones. Therapie. 1994 Jan-Feb;49(1):75–76. [PubMed] [Google Scholar]
  24. Ryoyama K., Nomura T., Nakamura S. Inhibition of macrophage nitric oxide production by arachidonate-cascade inhibitors. Cancer Immunol Immunother. 1993 Nov;37(6):385–391. doi: 10.1007/BF01526795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
  26. Shimoda K., Nomura M., Kato M. Effect of antioxidants, anti-inflammatory drugs, and histamine antagonists on sparfloxacin-induced phototoxicity in mice. Fundam Appl Toxicol. 1996 May;31(1):133–140. doi: 10.1006/faat.1996.0084. [DOI] [PubMed] [Google Scholar]
  27. Stadler J., Stefanovic-Racic M., Billiar T. R., Curran R. D., McIntyre L. A., Georgescu H. I., Simmons R. L., Evans C. H. Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol. 1991 Dec 1;147(11):3915–3920. [PubMed] [Google Scholar]
  28. Stefanovic-Racic M., Stadler J., Evans C. H. Nitric oxide and arthritis. Arthritis Rheum. 1993 Aug;36(8):1036–1044. doi: 10.1002/art.1780360803. [DOI] [PubMed] [Google Scholar]
  29. Yi E. S., Ulich T. R. Endotoxin, interleukin-1, and tumor necrosis factor cause neutrophil-dependent microvascular leakage in postcapillary venules. Am J Pathol. 1992 Mar;140(3):659–663. [PMC free article] [PubMed] [Google Scholar]
  30. Zabraniecki L., Negrier I., Vergne P., Arnaud M., Bonnet C., Bertin P., Treves R. Fluoroquinolone induced tendinopathy: report of 6 cases. J Rheumatol. 1996 Mar;23(3):516–520. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES