Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Nov;41(11):2406–2413. doi: 10.1128/aac.41.11.2406

Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumoniae.

P V Adrian 1, K P Klugman 1
PMCID: PMC164136  PMID: 9371341

Abstract

Streptococcus pneumoniae isolates resistant to several antimicrobial agent classes including trimethoprim-sulfamethoxazole have been reported with increasing frequency throughout the world. The MICs of trimethoprim, sulfamethoxazole, and trimethoprim-sulfamethoxazole (1:19) for 259 clinical isolates from South Africa were determined, and 166 of these 259 (64%) isolates were resistant to trimethoprim-sulfamethoxazole (MICs > or =20 mg/liter). Trimethoprim resistance was found to be more strongly correlated with trimethoprim-sulfamethoxazole resistance (correlation coefficient, 0.744) than was sulfamethoxazole resistance (correlation coefficient, 0.441). The dihydrofolate reductase genes from 11 trimethoprim-resistant (MICs, 64 to 512 microg/ml) clinical isolates of Streptococcus pneumoniae were amplified by PCR, and the nucleotide sequences were determined. Two main groups of mutations to the dihydrofolate reductase gene were found. Both groups shared six amino acid changes (Glu20-Asp, Pro70-Ser, Gln81-His, Asp92-Ala, Ile100-Leu, and Leu135-Phe). The first group included two extra changes (Lys60-Gln and Pro111-Ser), and the second group was characterized by six additional amino acid changes (Glu14-Asp, Ile74-Leu, Gln91-His, Glu94-Asp, Phe147-Ser, and Ala149-Thr). Chromosomal DNA from resistant isolates and cloned PCR products of the genes encoding resistant dihydrofolate reductases were capable of transforming a susceptible strain of S. pneumoniae to trimethoprim resistance. The inhibitor profiles of recombinant dihydrofolate reductase from resistant and susceptible isolates revealed that the dihydrofolate reductase from trimethoprim-resistant isolates was 50-fold more resistant (50% inhibitory doses [ID50s], 3.9 to 7.3 microM) than that from susceptible strains (ID50s, 0.15 microM). Site-directed mutagenesis experiments revealed that one mutation, Ile100-Leu, resulted in a 50-fold increase in the ID50 of trimethoprim. The resistant dihydrofolate reductases were characterized by highly conserved redundant changes in the nucleotide sequence, suggesting that the genes encoding resistant dihydrofolate reductases may have evolved as a result of inter- or intraspecies recombination by transformation.

Full Text

The Full Text of this article is available as a PDF (289.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian P. V., Thomson C. J., Klugman K. P., Amyes S. G. Prevalence and genetic location of non-transferable trimethoprim resistant dihydrofolate reductase genes in South African commensal faecal isolates. Epidemiol Infect. 1995 Oct;115(2):255–267. doi: 10.1017/s0950268800058386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amyes S. G., Smith J. T. R-factor trimethoprim resistance mechanism: an insusceptible target site. Biochem Biophys Res Commun. 1974 May 20;58(2):412–418. doi: 10.1016/0006-291x(74)90380-5. [DOI] [PubMed] [Google Scholar]
  3. Appleman J. R., Howell E. E., Kraut J., Blakley R. L. Role of aspartate 27 of dihydrofolate reductase from Escherichia coli in interconversion of active and inactive enzyme conformers and binding of NADPH. J Biol Chem. 1990 Apr 5;265(10):5579–5584. [PubMed] [Google Scholar]
  4. Baccanari D. P., Tansik R. L., Paterson S. J., Stone D. Characterization and amino acid sequence of Neisseria gonorrhoeae dihydrofolate reductase. J Biol Chem. 1984 Oct 10;259(19):12291–12298. [PubMed] [Google Scholar]
  5. Bolin J. T., Filman D. J., Matthews D. A., Hamlin R. C., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J Biol Chem. 1982 Nov 25;257(22):13650–13662. [PubMed] [Google Scholar]
  6. Brumfitt W., Hamilton-Miller J. M. Reassessment of the rationale for the combinations of sulphonamides with diaminopyrimidines. J Chemother. 1993 Dec;5(6):465–469. [PubMed] [Google Scholar]
  7. Burchall J. J., Hitchings G. H. Inhibitor binding analysis of dihydrofolate reductases from various species. Mol Pharmacol. 1965 Sep;1(2):126–136. [PubMed] [Google Scholar]
  8. Burdeska A., Ott M., Bannwarth W., Then R. L. Identical genes for trimethoprim-resistant dihydrofolate reductase from Staphylococcus aureus in Australia and central Europe. FEBS Lett. 1990 Jun 18;266(1-2):159–162. doi: 10.1016/0014-5793(90)81529-w. [DOI] [PubMed] [Google Scholar]
  9. Dale G. E., Broger C., D'Arcy A., Hartman P. G., DeHoogt R., Jolidon S., Kompis I., Labhardt A. M., Langen H., Locher H. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J Mol Biol. 1997 Feb 14;266(1):23–30. doi: 10.1006/jmbi.1996.0770. [DOI] [PubMed] [Google Scholar]
  10. Dale G. E., Broger C., Hartman P. G., Langen H., Page M. G., Then R. L., Stüber D. Characterization of the gene for the chromosomal dihydrofolate reductase (DHFR) of Staphylococcus epidermidis ATCC 14990: the origin of the trimethoprim-resistant S1 DHFR from Staphylococcus aureus? J Bacteriol. 1995 Jun;177(11):2965–2970. doi: 10.1128/jb.177.11.2965-2970.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dale G. E., Langen H., Page M. G., Then R. L., Stüber D. Cloning and characterization of a novel, plasmid-encoded trimethoprim-resistant dihydrofolate reductase from Staphylococcus haemolyticus MUR313. Antimicrob Agents Chemother. 1995 Sep;39(9):1920–1924. doi: 10.1128/aac.39.9.1920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dale G. E., Then R. L., Stüber D. Characterization of the gene for chromosomal trimethoprim-sensitive dihydrofolate reductase of Staphylococcus aureus ATCC 25923. Antimicrob Agents Chemother. 1993 Jul;37(7):1400–1405. doi: 10.1128/aac.37.7.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dowson C. G., Hutchison A., Brannigan J. A., George R. C., Hansman D., Liñares J., Tomasz A., Smith J. M., Spratt B. G. Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8842–8846. doi: 10.1073/pnas.86.22.8842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Filman D. J., Bolin J. T., Matthews D. A., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. II. Environment of bound NADPH and implications for catalysis. J Biol Chem. 1982 Nov 25;257(22):13663–13672. [PubMed] [Google Scholar]
  16. Flensburg J., Sköld O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur J Biochem. 1987 Feb 2;162(3):473–476. doi: 10.1111/j.1432-1033.1987.tb10664.x. [DOI] [PubMed] [Google Scholar]
  17. Flensburg J., Sköld O. Regulatory changes in the formation of chromosomal dihydrofolate reductase causing resistance to trimethoprim. J Bacteriol. 1984 Jul;159(1):184–190. doi: 10.1128/jb.159.1.184-190.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gleisner J. M., Peterson D. L., Blakley R. L. Amino-acid sequence of dihydrofolate reductase from a methotrexate-resistant mutant of Streptococcus faecium and identification of methionine residues at the inhibitor binding site. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3001–3005. doi: 10.1073/pnas.71.8.3001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heikkilä E., Renkonen O. V., Sunila R., Uurasmaa P., Huovinen P. The emergence and mechanisms of trimethoprim resistance in Escherichia coli isolated from outpatients in Finland. J Antimicrob Chemother. 1990 Feb;25(2):275–283. doi: 10.1093/jac/25.2.275. [DOI] [PubMed] [Google Scholar]
  20. Howe J. G., Wilson T. S. Co-trimoxazole-resistant pneumococci. Lancet. 1972 Jul 22;2(7769):184–185. doi: 10.1016/s0140-6736(72)91354-2. [DOI] [PubMed] [Google Scholar]
  21. Huovinen P., Sundström L., Swedberg G., Sköld O. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother. 1995 Feb;39(2):279–289. doi: 10.1128/aac.39.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Håvarstein L. S., Coomaraswamy G., Morrison D. A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11140–11144. doi: 10.1073/pnas.92.24.11140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Iwakura M., Kawata M., Tsuda K., Tanaka T. Nucleotide sequence of the thymidylate synthase B and dihydrofolate reductase genes contained in one Bacillus subtilis operon. Gene. 1988 Apr 15;64(1):9–20. doi: 10.1016/0378-1119(88)90476-3. [DOI] [PubMed] [Google Scholar]
  24. Klugman K. P., Koornhof H. J., Kuhnle V. Clinical and nasopharyngeal isolates of unusual multiply resistant pneumococci. Am J Dis Child. 1986 Nov;140(11):1186–1190. doi: 10.1001/archpedi.1986.02140250112045. [DOI] [PubMed] [Google Scholar]
  25. Klugman K. P., Koornhof H. J., Wasas A., Storey K., Gilbertson I. Carriage of penicillin resistant pneumococci. Arch Dis Child. 1986 Apr;61(4):377–381. doi: 10.1136/adc.61.4.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klugman K. P. Pneumococcal resistance to antibiotics. Clin Microbiol Rev. 1990 Apr;3(2):171–196. doi: 10.1128/cmr.3.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Laible G., Spratt B. G., Hakenbeck R. Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol. 1991 Aug;5(8):1993–2002. doi: 10.1111/j.1365-2958.1991.tb00821.x. [DOI] [PubMed] [Google Scholar]
  28. Lefevre J. C., Faucon G., Sicard A. M., Gasc A. M. DNA fingerprinting of Streptococcus pneumoniae strains by pulsed-field gel electrophoresis. J Clin Microbiol. 1993 Oct;31(10):2724–2728. doi: 10.1128/jcm.31.10.2724-2728.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Locher H. H., Schlunegger H., Hartman P. G., Angehrn P., Then R. L. Antibacterial activities of epiroprim, a new dihydrofolate reductase inhibitor, alone and in combination with dapsone. Antimicrob Agents Chemother. 1996 Jun;40(6):1376–1381. doi: 10.1128/aac.40.6.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martin C., Sibold C., Hakenbeck R. Relatedness of penicillin-binding protein 1a genes from different clones of penicillin-resistant Streptococcus pneumoniae isolated in South Africa and Spain. EMBO J. 1992 Nov;11(11):3831–3836. doi: 10.1002/j.1460-2075.1992.tb05475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Matthews D. A., Alden R. A., Bolin J. T., Filman D. J., Freer S. T., Hamlin R., Hol W. G., Kisliuk R. L., Pastore E. J., Plante L. T. Dihydrofolate reductase from Lactobacillus casei. X-ray structure of the enzyme methotrexate.NADPH complex. J Biol Chem. 1978 Oct 10;253(19):6946–6954. [PubMed] [Google Scholar]
  32. Matthews D. A., Bolin J. T., Burridge J. M., Filman D. J., Volz K. W., Kaufman B. T., Beddell C. R., Champness J. N., Stammers D. K., Kraut J. Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim. J Biol Chem. 1985 Jan 10;260(1):381–391. [PubMed] [Google Scholar]
  33. Matthews D. A., Bolin J. T., Burridge J. M., Filman D. J., Volz K. W., Kraut J. Dihydrofolate reductase. The stereochemistry of inhibitor selectivity. J Biol Chem. 1985 Jan 10;260(1):392–399. [PubMed] [Google Scholar]
  34. OSBORN M. J., HUENNEKENS F. M. Enzymatic reduction of dihydrofolic acid. J Biol Chem. 1958 Oct;233(4):969–974. [PubMed] [Google Scholar]
  35. Pérez J. L., Linares J., Bosch J., López de Goicoechea M. J., Martín R. Antibiotic resistance of Streptococcus pneumoniae in childhood carriers. J Antimicrob Chemother. 1987 Feb;19(2):278–280. doi: 10.1093/jac/19.2.278. [DOI] [PubMed] [Google Scholar]
  36. Recchia G. D., Hall R. M. Gene cassettes: a new class of mobile element. Microbiology. 1995 Dec;141(Pt 12):3015–3027. doi: 10.1099/13500872-141-12-3015. [DOI] [PubMed] [Google Scholar]
  37. Rouch D. A., Messerotti L. J., Loo L. S., Jackson C. A., Skurray R. A. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol Microbiol. 1989 Feb;3(2):161–175. doi: 10.1111/j.1365-2958.1989.tb01805.x. [DOI] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Singh K. V., Reves R. R., Pickering L. K., Murray B. E. Identification by DNA sequence analysis of a new plasmid-encoded trimethoprim resistance gene in fecal Escherichia coli isolates from children in day-care centers. Antimicrob Agents Chemother. 1992 Aug;36(8):1720–1726. doi: 10.1128/aac.36.8.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sirotnak F. M. Dual consequence of mutation in the dihydrofolate reductase gene of Diplococcus pneumoniae. Biochem Biophys Res Commun. 1969 Aug 15;36(4):603–607. doi: 10.1016/0006-291x(69)90347-7. [DOI] [PubMed] [Google Scholar]
  41. Smith A. M., Klugman K. P. "Megaprimer" method of PCR-based mutagenesis: the concentration of megaprimer is a critical factor. Biotechniques. 1997 Mar;22(3):438–442. doi: 10.2144/97223bm13. [DOI] [PubMed] [Google Scholar]
  42. Smith A. M., Klugman K. P. Alterations in penicillin-binding protein 2B from penicillin-resistant wild-type strains of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1995 Apr;39(4):859–867. doi: 10.1128/aac.39.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Smith D. R., Calvo J. M. Nucleotide sequence of dihydrofolate reductase genes from trimethoprim-resistant mutants of Escherichia coli. Evidence that dihydrofolate reductase interacts with another essential gene product. Mol Gen Genet. 1982;187(1):72–78. doi: 10.1007/BF00384386. [DOI] [PubMed] [Google Scholar]
  44. Smith D. R., Calvo J. M. Nucleotide sequence of the E coli gene coding for dihydrofolate reductase. Nucleic Acids Res. 1980 May 24;8(10):2255–2274. doi: 10.1093/nar/8.10.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. TOMASZ A., HOTCHKISS R. D. REGULATION OF THE TRANSFORMABILITY OF PHEUMOCOCCAL CULTURES BY MACROMOLECULAR CELL PRODUCTS. Proc Natl Acad Sci U S A. 1964 Mar;51:480–487. doi: 10.1073/pnas.51.3.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tennhammar-Ekman B., Sköld O. Trimethoprim resistance plasmids of different origin encode different drug-resistant dihydrofolate reductases. Plasmid. 1979 Jul;2(3):334–346. doi: 10.1016/0147-619x(79)90017-9. [DOI] [PubMed] [Google Scholar]
  47. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995 Sep;33(9):2233–2239. doi: 10.1128/jcm.33.9.2233-2239.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]
  49. de Groot R., Campos J., Moseley S. L., Smith A. L. Molecular cloning and mechanism of trimethoprim resistance in Haemophilus influenzae. Antimicrob Agents Chemother. 1988 Apr;32(4):477–484. doi: 10.1128/aac.32.4.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. de Groot R., Chaffin D. O., Kuehn M., Smith A. L. Trimethoprim resistance in Haemophilus influenzae is due to altered dihydrofolate reductase(s). Biochem J. 1991 Mar 15;274(Pt 3):657–662. [PMC free article] [PubMed] [Google Scholar]
  51. de Groot R., Sluijter M., de Bruyn A., Campos J., Goessens W. H., Smith A. L., Hermans P. W. Genetic characterization of trimethoprim resistance in Haemophilus influenzae. Antimicrob Agents Chemother. 1996 Sep;40(9):2131–2136. doi: 10.1128/aac.40.9.2131. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES