Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Nov;41(11):2418–2423. doi: 10.1128/aac.41.11.2418

Semiquantitation of cooperativity in binding of vancomycin-group antibiotics to vancomycin-susceptible and -resistant organisms.

D A Beauregard 1, A J Maguire 1, D H Williams 1, P E Reynolds 1
PMCID: PMC164138  PMID: 9371343

Abstract

The association of vancomycin group antibiotics with the growing bacterial cell wall was investigated by using the cell wall precursor analog di-N-acetyl-Lys-D-Ala-D-Ala in competition binding experiments. The affinities of the antibiotics for the -D-Ala-D-Ala-containing cell wall precursors of Bacillus subtilis ATCC 6633 (a model for vancomycin-susceptible gram-positive bacteria) and for the -D-Ala-D-Lac-containing cell wall precursors of Leuconostoc mesenteroides (a model for vancomycin-resistant strains of Enterococcus faecium and Enterococcus faecalis) were determined by a whole-cell assay. The binding of strongly dimerizing antibiotics such as eremomycin to the bacterial surface was thus shown to be enhanced by up to 2 orders of magnitude (relative to the binding in free solution) by the chelate effect, whereas weakly dimerizing antibiotics like vancomycin and antibiotics carrying lipid tails (teicoplanin) benefited less (ca. 1 order of magnitude). The affinity measured in this way correlates well with the MIC of the antibiotic, and a consequence of this is that future design of semisynthetic vancomycin-group antibiotics should attempt to incorporate chelate effect-enhancing structural features.

Full Text

The Full Text of this article is available as a PDF (208.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. E., Hobbs J. N., Jr, Nicas T. I. Inhibition of peptidoglycan biosynthesis in vancomycin-susceptible and -resistant bacteria by a semisynthetic glycopeptide antibiotic. Antimicrob Agents Chemother. 1996 Oct;40(10):2356–2362. doi: 10.1128/aac.40.10.2356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen N. E., LeTourneau D. L., Hobbs J. N., Jr Molecular interactions of a semisynthetic glycopeptide antibiotic with D-alanyl-D-alanine and D-alanyl-D-lactate residues. Antimicrob Agents Chemother. 1997 Jan;41(1):66–71. doi: 10.1128/aac.41.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arthur M., Depardieu F., Reynolds P., Courvalin P. Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci. Mol Microbiol. 1996 Jul;21(1):33–44. doi: 10.1046/j.1365-2958.1996.00617.x. [DOI] [PubMed] [Google Scholar]
  4. Beauregard D. A., Williams D. H., Gwynn M. N., Knowles D. J. Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother. 1995 Mar;39(3):781–785. doi: 10.1128/AAC.39.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Billot-Klein D., Gutmann L., Sablé S., Guittet E., van Heijenoort J. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J Bacteriol. 1994 Apr;176(8):2398–2405. doi: 10.1128/jb.176.8.2398-2405.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bugg T. D., Wright G. D., Dutka-Malen S., Arthur M., Courvalin P., Walsh C. T. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry. 1991 Oct 29;30(43):10408–10415. doi: 10.1021/bi00107a007. [DOI] [PubMed] [Google Scholar]
  7. Good V. M., Gwynn M. N., Knowles D. J. MM 45289, a potent glycopeptide antibiotic which interacts weakly with diacetyl-L-lysyl-D-alanyl-D-alanine. J Antibiot (Tokyo) 1990 May;43(5):550–555. doi: 10.7164/antibiotics.43.550. [DOI] [PubMed] [Google Scholar]
  8. Handwerger S., Pucci M. J., Volk K. J., Liu J., Lee M. S. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J Bacteriol. 1994 Jan;176(1):260–264. doi: 10.1128/jb.176.1.260-264.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herrin T. R., Thomas A. M., Perun T. J., Mao J. C., Fesik S. W. Preparation of biologically active ristocetin derivatives: replacements of the 1'-amino group. J Med Chem. 1985 Sep;28(9):1371–1375. doi: 10.1021/jm00147a047. [DOI] [PubMed] [Google Scholar]
  10. Malabarba A., Trani A., Tarzia G., Ferrari P., Pallanza R., Berti M. Synthesis and biological evaluation of de(acetylglucosaminyl)didehydrodeoxy derivatives of teicoplanin antibodies. J Med Chem. 1989 Apr;32(4):783–788. doi: 10.1021/jm00124a010. [DOI] [PubMed] [Google Scholar]
  11. Nicas T. I., Mullen D. L., Flokowitsch J. E., Preston D. A., Snyder N. J., Zweifel M. J., Wilkie S. C., Rodriguez M. J., Thompson R. C., Cooper R. D. Semisynthetic glycopeptide antibiotics derived from LY264826 active against vancomycin-resistant enterococci. Antimicrob Agents Chemother. 1996 Sep;40(9):2194–2199. doi: 10.1128/aac.40.9.2194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nieto M., Perkins H. R. Modifications of the acyl-D-alanyl-D-alanine terminus affecting complex-formation with vancomycin. Biochem J. 1971 Aug;123(5):789–803. doi: 10.1042/bj1230789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nieto M., Perkins H. R. Physicochemical properties of vancomycin and iodovancomycin and their complexes with diacetyl-L-lysyl-D-alanyl-D-alanine. Biochem J. 1971 Aug;123(5):773–787. doi: 10.1042/bj1230773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Noble W. C., Virani Z., Cree R. G. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett. 1992 Jun 1;72(2):195–198. doi: 10.1016/0378-1097(92)90528-v. [DOI] [PubMed] [Google Scholar]
  15. Prowse W. G., Kline A. D., Skelton M. A., Loncharich R. J. Conformation of A82846B, a glycopeptide antibiotic, complexed with its cell wall fragment: an asymmetric homodimer determined using NMR spectroscopy. Biochemistry. 1995 Jul 25;34(29):9632–9644. doi: 10.1021/bi00029a041. [DOI] [PubMed] [Google Scholar]
  16. Rake J. B., Gerber R., Mehta R. J., Newman D. J., Oh Y. K., Phelen C., Shearer M. C., Sitrin R. D., Nisbet L. J. Glycopeptide antibiotics: a mechanism-based screen employing a bacterial cell wall receptor mimetic. J Antibiot (Tokyo) 1986 Jan;39(1):58–67. doi: 10.7164/antibiotics.39.58. [DOI] [PubMed] [Google Scholar]
  17. Reynolds P. E. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis. 1989 Nov;8(11):943–950. doi: 10.1007/BF01967563. [DOI] [PubMed] [Google Scholar]
  18. Sheldrick G. M., Jones P. G., Kennard O., Williams D. H., Smith G. A. Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine. Nature. 1978 Jan 19;271(5642):223–225. doi: 10.1038/271223a0. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES