Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Nov;41(11):2433–2438. doi: 10.1128/aac.41.11.2433

Exposure-response relationships for saquinavir, zidovudine, and zalcitabine in combination therapy.

G F Vanhove 1, J M Gries 1, D Verotta 1, L B Sheiner 1, R Coombs 1, A C Collier 1, T F Blaschke 1
PMCID: PMC164141  PMID: 9371346

Abstract

The relationship of CD4+ cell response, level of RNA in plasma, and quantitative peripheral blood mononuclear cell (PBMC) titer to apparent drug exposure was investigated by using data from AIDS Clinical Trial Group protocol 229, a multicenter randomized study. Patients received either saquinavir, zalcitabine, or a combination of both, along with open-label zidovudine. Approximately 100 patients were enrolled in each arm, and the primary study duration was 24 weeks. Individual drug exposure, the area under the concentration-time curve, was estimated by using population-based pharmacokinetic methods. Response was defined as the maximum increase in CD4+ cell count or the maximum decrease in RNA in plasma or PBMC titer adjusted for baseline CD4+ cell count, RNA in plasma, and PBMC titer, respectively. Regression of responses on exposure demonstrated an exposure effect for saquinavir which was significant for the maximum increase in CD4+ cell count and the decrease in RNA in plasma. For the PBMC titer, no significant relationship could be demonstrated but the results suggested a trend similar to that of the other response variables. For all three response variables, the slope of the saquinavir exposure response was greater with the triple combination (saquinavir, zidovudine, and zalcitabine) than with the combination of saquinavir and zidovudine, suggesting possible synergism between saquinavir and zalcitabine.

Full Text

The Full Text of this article is available as a PDF (183.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collier A. C., Coombs R. W., Schoenfeld D. A., Bassett R. L., Timpone J., Baruch A., Jones M., Facey K., Whitacre C., McAuliffe V. J. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. AIDS Clinical Trials Group. N Engl J Med. 1996 Apr 18;334(16):1011–1017. doi: 10.1056/NEJM199604183341602. [DOI] [PubMed] [Google Scholar]
  2. Fiscus S. A., DeGruttola V., Gupta P., Katzenstein D. A., Meyer W. A., 3rd, LoFaro M. L., Katzman M., Ragni M. V., Reichelderfer P. S., Coombs R. W. Human immunodeficiency virus type 1 quantitative cell microculture as a measure of antiviral efficacy in a multicenter clinical trial. J Infect Dis. 1995 Feb;171(2):305–311. doi: 10.1093/infdis/171.2.305. [DOI] [PubMed] [Google Scholar]
  3. Hollinger F. B., Bremer J. W., Myers L. E., Gold J. W., McQuay L. Standardization of sensitive human immunodeficiency virus coculture procedures and establishment of a multicenter quality assurance program for the AIDS Clinical Trials Group. The NIH/NIAID/DAIDS/ACTG Virology Laboratories. J Clin Microbiol. 1992 Jul;30(7):1787–1794. doi: 10.1128/jcm.30.7.1787-1794.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Johnson V. A., Merrill D. P., Chou T. C., Hirsch M. S. Human immunodeficiency virus type 1 (HIV-1) inhibitory interactions between protease inhibitor Ro 31-8959 and zidovudine, 2',3'-dideoxycytidine, or recombinant interferon-alpha A against zidovudine-sensitive or -resistant HIV-1 in vitro. J Infect Dis. 1992 Nov;166(5):1143–1146. doi: 10.1093/infdis/166.5.1143. [DOI] [PubMed] [Google Scholar]
  5. Pachl C., Todd J. A., Kern D. G., Sheridan P. J., Fong S. J., Stempien M., Hoo B., Besemer D., Yeghiazarian T., Irvine B. Rapid and precise quantification of HIV-1 RNA in plasma using a branched DNA signal amplification assay. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Apr 15;8(5):446–454. doi: 10.1097/00042560-199504120-00003. [DOI] [PubMed] [Google Scholar]
  6. Sale M., Sheiner L. B., Volberding P., Blaschke T. F. Zidovudine response relationships in early human immunodeficiency virus infection. Clin Pharmacol Ther. 1993 Nov;54(5):556–566. doi: 10.1038/clpt.1993.188. [DOI] [PubMed] [Google Scholar]
  7. Schapiro J. M., Winters M. A., Stewart F., Efron B., Norris J., Kozal M. J., Merigan T. C. The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients. Ann Intern Med. 1996 Jun 15;124(12):1039–1050. doi: 10.7326/0003-4819-124-12-199606150-00003. [DOI] [PubMed] [Google Scholar]
  8. Stretcher B. N., Pesce A. J., Frame P. T., Greenberg K. A., Stein D. S. Correlates of zidovudine phosphorylation with markers of HIV disease progression and drug toxicity. AIDS. 1994 Jun;8(6):763–769. doi: 10.1097/00002030-199406000-00007. [DOI] [PubMed] [Google Scholar]
  9. Stretcher B. N., Pesce A. J., Murray J. A., Hurtubise P. E., Vine W. H., Frame P. T. Concentrations of phosphorylated zidovudine (ZDV) in patient leukocytes do not correlate with ZDV dose or plasma concentrations. Ther Drug Monit. 1991 Jul;13(4):325–331. doi: 10.1097/00007691-199107000-00008. [DOI] [PubMed] [Google Scholar]
  10. Vanhove G. F., Kastrissios H., Gries J. M., Verotta D., Park K., Collier A. C., Squires K., Sheiner L. B., Blaschke T. F. Pharmacokinetics of saquinavir, zidovudine, and zalcitabine in combination therapy. Antimicrob Agents Chemother. 1997 Nov;41(11):2428–2432. doi: 10.1128/aac.41.11.2428. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES