Abstract
Mycobacterium smegmatis inactivates rifampin by ribosylating this antibiotic. The gene responsible for this ability was cloned and was shown to confer low-level resistance to this antibiotic (MIC increase, about 12-fold) in related organisms. A 600-bp subclone responsible for ribosylating activity and resistance carried an open reading frame of 429 bp. Targeted disruption of the gene in M. smegmatis resulted in mutants with much increased susceptibility to rifampin (MICs of 1.5 instead of 20 microg/ml) as well as the loss of antibiotic-inactivating ability. Also, disruption of this gene led to a much lower frequency of occurrence of spontaneous high-level rifampin-resistant mutants.
Full Text
The Full Text of this article is available as a PDF (254.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abadi F. J., Carter P. E., Cash P., Pennington T. H. Rifampin resistance in Neisseria meningitidis due to alterations in membrane permeability. Antimicrob Agents Chemother. 1996 Mar;40(3):646–651. doi: 10.1128/aac.40.3.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aldovini A., Husson R. N., Young R. A. The uraA locus and homologous recombination in Mycobacterium bovis BCG. J Bacteriol. 1993 Nov;175(22):7282–7289. doi: 10.1128/jb.175.22.7282-7289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Andersen S. J., Quan S., Gowan B., Dabbs E. R. Monooxygenase-like sequence of a Rhodococcus equi gene conferring increased resistance to rifampin by inactivating this antibiotic. Antimicrob Agents Chemother. 1997 Jan;41(1):218–221. doi: 10.1128/aac.41.1.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balasubramanian V., Pavelka M. S., Jr, Bardarov S. S., Martin J., Weisbrod T. R., McAdam R. A., Bloom B. R., Jacobs W. R., Jr Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J Bacteriol. 1996 Jan;178(1):273–279. doi: 10.1128/jb.178.1.273-279.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes W. M., Bevan M., Son P. H. Kilo-sequencing: creation of an ordered nest of asymmetric deletions across a large target sequence carried on phage M13. Methods Enzymol. 1983;101:98–122. doi: 10.1016/0076-6879(83)01008-3. [DOI] [PubMed] [Google Scholar]
- Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
- Brown C. M., Dalphin M. E., Stockwell P. A., Tate W. P. The translational termination signal database. Nucleic Acids Res. 1993 Jul 1;21(13):3119–3123. doi: 10.1093/nar/21.13.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clavé D., Archambaud M., Rouquet R. M., Massip P., Moatti N. Activité in vitro de vingt antibiotiques sur Rhodococcus equi. Pathol Biol (Paris) 1991 May;39(5):424–428. [PubMed] [Google Scholar]
- Dabbs E. R., Gowan B., Andersen S. J. Nocardioform arsenic resistance plasmids and construction of Rhodococcus cloning vectors. Plasmid. 1990 May;23(3):242–247. doi: 10.1016/0147-619x(90)90056-i. [DOI] [PubMed] [Google Scholar]
- Dabbs E. R., Yazawa K., Mikami Y., Miyaji M., Morisaki N., Iwasaki S., Furihata K. Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation. Antimicrob Agents Chemother. 1995 Apr;39(4):1007–1009. doi: 10.1128/aac.39.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dabbs E. R., Yazawa K., Tanaka Y., Mikami Y., Miyaji M., Andersen S. J., Morisaki N., Iwasaki S., Shida O., Takagi H. Rifampicin inactivation by Bacillus species. J Antibiot (Tokyo) 1995 Aug;48(8):815–819. doi: 10.7164/antibiotics.48.815. [DOI] [PubMed] [Google Scholar]
- Emmons W., Reichwein B., Winslow D. L. Rhodococcus equi infection in the patient with AIDS: literature review and report of an unusual case. Rev Infect Dis. 1991 Jan-Feb;13(1):91–96. doi: 10.1093/clinids/13.1.91. [DOI] [PubMed] [Google Scholar]
- Gough J. A., Murray N. E. Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol. 1983 May 5;166(1):1–19. doi: 10.1016/s0022-2836(83)80047-3. [DOI] [PubMed] [Google Scholar]
- Guerrero C., Stockman L., Marchesi F., Bodmer T., Roberts G. D., Telenti A. Evaluation of the rpoB gene in rifampicin-susceptible and -resistant Mycobacterium avium and Mycobacterium intracellulare. J Antimicrob Chemother. 1994 Mar;33(3):661–663. doi: 10.1093/jac/33.3.661-a. [DOI] [PubMed] [Google Scholar]
- Hetherington S. V., Watson A. S., Patrick C. C. Sequence and analysis of the rpoB gene of Mycobacterium smegmatis. Antimicrob Agents Chemother. 1995 Sep;39(9):2164–2166. doi: 10.1128/aac.39.9.2164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honore N., Cole S. T. Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother. 1993 Mar;37(3):414–418. doi: 10.1128/aac.37.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui J., Gordon N., Kajioka R. Permeability barrier to rifampin in mycobacteria. Antimicrob Agents Chemother. 1977 May;11(5):773–779. doi: 10.1128/aac.11.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husson R. N., James B. E., Young R. A. Gene replacement and expression of foreign DNA in mycobacteria. J Bacteriol. 1990 Feb;172(2):519–524. doi: 10.1128/jb.172.2.519-524.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kesseler M., Dabbs E. R., Averhoff B., Gottschalk G. Studies on the isopropylbenzene 2,3-dioxygenase and the 3-isopropylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2. Microbiology. 1996 Nov;142(Pt 11):3241–3251. doi: 10.1099/13500872-142-11-3241. [DOI] [PubMed] [Google Scholar]
- Maggi N., Pasqualucci C. R., Ballotta R., Sensi P. Rifampicin: a new orally active rifamycin. Chemotherapy. 1966;11(5):285–292. doi: 10.1159/000220462. [DOI] [PubMed] [Google Scholar]
- Mizuguchi Y., Udou T., Yamada T. Mechanism of antibiotic resistance in Mycobacterium intracellulare. Microbiol Immunol. 1983;27(5):425–431. doi: 10.1111/j.1348-0421.1983.tb00601.x. [DOI] [PubMed] [Google Scholar]
- Ohno H., Koga H., Kohno S., Tashiro T., Hara K. Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother. 1996 Apr;40(4):1053–1056. doi: 10.1128/aac.40.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quan S., Dabbs E. R. Nocardioform arsenic resistance plasmid characterization and improved Rhodococcus cloning vectors. Plasmid. 1993 Jan;29(1):74–79. doi: 10.1006/plas.1993.1010. [DOI] [PubMed] [Google Scholar]
- Seto D. An improved method for sequencing double stranded plasmid DNA from minipreps using DMSO and modified template preparation. Nucleic Acids Res. 1990 Oct 11;18(19):5905–5906. doi: 10.1093/nar/18.19.5905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seto D., Seto J., Deshpande P., Hood L. DMSO resolves certain compressions and signal dropouts in fluorescent dye labeled primer-based DNA sequencing reactions. DNA Seq. 1995;5(3):131–140. doi: 10.3109/10425179509029352. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Yazawa K., Dabbs E. R., Nishikawa K., Komaki H., Mikami Y., Miyaji M., Morisaki N., Iwasaki S. Different rifampicin inactivation mechanisms in Nocardia and related taxa. Microbiol Immunol. 1996;40(1):1–4. doi: 10.1111/j.1348-0421.1996.tb03303.x. [DOI] [PubMed] [Google Scholar]
- Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
- Van Boxtel R. M., Lambrecht R. S., Collins M. T. Effects of colonial morphology and tween 80 on antimicrobial susceptibility of Mycobacterium paratuberculosis. Antimicrob Agents Chemother. 1990 Dec;34(12):2300–2303. doi: 10.1128/aac.34.12.2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamori S., Tsukamura M. Paradoxical effect of Tween 80 between the susceptibility to rifampicin and streptomycin and the susceptibility to ethambutol and sulfadimethoxine in the Mycobacterium avium-Mycobacterium intracellulare complex. Microbiol Immunol. 1991;35(10):921–926. doi: 10.1111/j.1348-0421.1991.tb02031.x. [DOI] [PubMed] [Google Scholar]
- Yazawa K., Mikami Y., Maeda A., Akao M., Morisaki N., Iwasaki S. Inactivation of rifampin by Nocardia brasiliensis. Antimicrob Agents Chemother. 1993 Jun;37(6):1313–1317. doi: 10.1128/aac.37.6.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yazawa K., Mikami Y., Maeda A., Morisaki N., Iwasaki S. Phosphorylative inactivation of rifampicin by Nocardia otitidiscaviarum. J Antimicrob Chemother. 1994 Jun;33(6):1127–1135. doi: 10.1093/jac/33.6.1127. [DOI] [PubMed] [Google Scholar]