Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Dec;41(12):2606–2611. doi: 10.1128/aac.41.12.2606

Nosocomial spread of cephem-resistant Escherichia coli strains carrying multiple Toho-1-like beta-lactamase genes.

T Yagi 1, H Kurokawa 1, K Senda 1, S Ichiyama 1, H Ito 1, S Ohsuka 1, K Shibayama 1, K Shimokata 1, N Kato 1, M Ohta 1, Y Arakawa 1
PMCID: PMC164177  PMID: 9420027

Abstract

Escherichia coli HKY56, which demonstrated resistance to various beta-lactams except carbapenems, was isolated from the throat swab of an inpatient in 1994. Conjugal transfer of cephem resistance from HKY56 to E. coli CSH2 was not successful. Three cefotaxime-resistant E. coli clones harboring plasmid pMRE001, pMRE002, or pMRE003, each of which carried a 3.4-, 5.8-, or 6.2-kb EcoRI fragment insert, respectively, were obtained from HKY56. Although restriction analysis suggested their different origins, these clones showed similar profiles of resistance to various beta-lactams. The sequence of 10 amino acid residues at the N terminus of beta-lactamase purified from E. coli HB101(pMRE001) was identical to that of Toho-1. This Toho-1-like beta-lactamase-1 (TLB-1) was able to hydrolyze cefoperazone and cefotaxime efficiently, but it failed to hydrolyze cephamycins. A Toho-1-specific DNA probe was hybridized with three distinct EcoRI fragments derived from the chromosomal DNA of strain HKY56, and these fragments corresponded to DNA inserts carried by pMRE001, pMRE002, and pMRE003, respectively. PCR and Southern hybridization analysis suggested that all six cephem-resistant E. coli strains, strains HKY273, HKY285, HKY288, HKY305, HKY316, and HKY335, which were isolated in 1996 at the same hospital where strain HKY56 had been isolated, also possessed multiple Toho-1-like beta-lactamase (TLB) genes, and the hybridization patterns obtained with the Toho-1-specific probe were quite similar among these six isolates. The DNA fingerprinting patterns observed by pulsed-field gel electrophoresis revealed that among the E. coli isolates tested, all isolates except HKY56 possessed a similar genetic background. These findings suggested that E. coli strains that carry chromosomally multiplied TLB genes may have been proliferating and transmitted among patients in the same hospital.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann R. J., Monroe P. W. Bacteremic urinary tract infection in older people. J Am Geriatr Soc. 1996 Aug;44(8):927–933. doi: 10.1111/j.1532-5415.1996.tb01862.x. [DOI] [PubMed] [Google Scholar]
  2. Barthélémy M., Péduzzi J., Bernard H., Tancrède C., Labia R. Close amino acid sequence relationship between the new plasmid-mediated extended-spectrum beta-lactamase MEN-1 and chromosomally encoded enzymes of Klebsiella oxytoca. Biochim Biophys Acta. 1992 Jul 13;1122(1):15–22. doi: 10.1016/0167-4838(92)90121-s. [DOI] [PubMed] [Google Scholar]
  3. Bauernfeind A., Stemplinger I., Jungwirth R., Ernst S., Casellas J. M. Sequences of beta-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other beta-lactamases. Antimicrob Agents Chemother. 1996 Feb;40(2):509–513. doi: 10.1128/aac.40.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford P. A., Cherubin C. E., Idemyor V., Rasmussen B. A., Bush K. Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: identification of the extended-spectrum TEM-12 and TEM-10 ceftazidime-hydrolyzing beta-lactamases in a single isolate. Antimicrob Agents Chemother. 1994 Apr;38(4):761–766. doi: 10.1128/aac.38.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bush K., Sykes R. B. Methodology for the study of beta-lactamases. Antimicrob Agents Chemother. 1986 Jul;30(1):6–10. doi: 10.1128/aac.30.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Craven D. E., Steger K. A., Barber T. W. Preventing nosocomial pneumonia: state of the art and perspectives for the 1990s. Am J Med. 1991 Sep 16;91(3B):44S–53S. doi: 10.1016/0002-9343(91)90343-v. [DOI] [PubMed] [Google Scholar]
  8. Fosberry A. P., Payne D. J., Lawlor E. J., Hodgson J. E. Cloning and sequence analysis of blaBIL-1, a plasmid-mediated class C beta-lactamase gene in Escherichia coli BS. Antimicrob Agents Chemother. 1994 May;38(5):1182–1185. doi: 10.1128/aac.38.5.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gransden W. R., Eykyn S. J., Phillips I., Rowe B. Bacteremia due to Escherichia coli: a study of 861 episodes. Rev Infect Dis. 1990 Nov-Dec;12(6):1008–1018. doi: 10.1093/clinids/12.6.1008. [DOI] [PubMed] [Google Scholar]
  10. Heritage J., Hawkey P. M., Todd N., Lewis I. J. Transposition of the gene encoding a TEM-12 extended-spectrum beta-lactamase. Antimicrob Agents Chemother. 1992 Sep;36(9):1981–1986. doi: 10.1128/aac.36.9.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ichiyama S., Ohta M., Shimokata K., Kato N., Takeuchi J. Genomic DNA fingerprinting by pulsed-field gel electrophoresis as an epidemiological marker for study of nosocomial infections caused by methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1991 Dec;29(12):2690–2695. doi: 10.1128/jcm.29.12.2690-2695.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ishii Y., Ohno A., Taguchi H., Imajo S., Ishiguro M., Matsuzawa H. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli. Antimicrob Agents Chemother. 1995 Oct;39(10):2269–2275. doi: 10.1128/aac.39.10.2269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacoby G. A., Carreras I. Activities of beta-lactam antibiotics against Escherichia coli strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1990 May;34(5):858–862. doi: 10.1128/aac.34.5.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacoby G. A., Medeiros A. A. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991 Sep;35(9):1697–1704. doi: 10.1128/aac.35.9.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones R. N. Impact of changing pathogens and antimicrobial susceptibility patterns in the treatment of serious infections in hospitalized patients. Am J Med. 1996 Jun 24;100(6A):3S–12S. doi: 10.1016/s0002-9343(96)00102-7. [DOI] [PubMed] [Google Scholar]
  16. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimura K., Arakawa Y., Ohsuka S., Ito H., Suzuki K., Kurokawa H., Kato N., Ohta M. Molecular aspects of high-level resistance to sulbactam-cefoperazone in Klebsiella oxytoca clinical isolates. Antimicrob Agents Chemother. 1996 Sep;40(9):1988–1994. doi: 10.1128/aac.40.9.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levine M. M. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J Infect Dis. 1987 Mar;155(3):377–389. doi: 10.1093/infdis/155.3.377. [DOI] [PubMed] [Google Scholar]
  19. Livermore D. M. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995 Oct;8(4):557–584. doi: 10.1128/cmr.8.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matsumoto Y., Ikeda F., Kamimura T., Yokota Y., Mine Y. Novel plasmid-mediated beta-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob Agents Chemother. 1988 Aug;32(8):1243–1246. doi: 10.1128/aac.32.8.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Recchia G. D., Hall R. M. Gene cassettes: a new class of mobile element. Microbiology. 1995 Dec;141(Pt 12):3015–3027. doi: 10.1099/13500872-141-12-3015. [DOI] [PubMed] [Google Scholar]
  22. Sanders C. C., Sanders W. E., Jr beta-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin Infect Dis. 1992 Nov;15(5):824–839. doi: 10.1093/clind/15.5.824. [DOI] [PubMed] [Google Scholar]
  23. Seeberg A. H., Tolxdorff-Neutzling R. M., Wiedemann B. Chromosomal beta-lactamases of Enterobacter cloacae are responsible for resistance to third-generation cephalosporins. Antimicrob Agents Chemother. 1983 Jun;23(6):918–925. doi: 10.1128/aac.23.6.918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith C. L., Cantor C. R. Purification, specific fragmentation, and separation of large DNA molecules. Methods Enzymol. 1987;155:449–467. doi: 10.1016/0076-6879(87)55030-3. [DOI] [PubMed] [Google Scholar]
  25. Stamm W. E., Hooton T. M. Management of urinary tract infections in adults. N Engl J Med. 1993 Oct 28;329(18):1328–1334. doi: 10.1056/NEJM199310283291808. [DOI] [PubMed] [Google Scholar]
  26. Unhanand M., Mustafa M. M., McCracken G. H., Jr, Nelson J. D. Gram-negative enteric bacillary meningitis: a twenty-one-year experience. J Pediatr. 1993 Jan;122(1):15–21. doi: 10.1016/s0022-3476(05)83480-8. [DOI] [PubMed] [Google Scholar]
  27. Weber D. A., Sanders C. C., Bakken J. S., Quinn J. P. A novel chromosomal TEM derivative and alterations in outer membrane proteins together mediate selective ceftazidime resistance in Escherichia coli. J Infect Dis. 1990 Aug;162(2):460–465. doi: 10.1093/infdis/162.2.460. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES