Abstract
CS-834 is a novel oral carbapenem antibiotic. This compound is an ester-type prodrug of the active metabolite R-95867. The antibacterial activity of R-95867 was tested against 1,323 clinical isolates of 35 species and was compared with those of oral cephems, i.e., cefteram, cefpodoxime, cefdinir, and cefditoren, and that of a parenteral carbapenem, imipenem. R-95867 exhibited a broad spectrum of activity covering both gram-positive and -negative aerobes and anaerobes. Its activity was superior to those of the other compounds tested against most of the bacterial species tested. R-95867 showed potent antibacterial activity against clinically significant pathogens: methicillin-susceptible Staphylococcus aureus including ofloxacin-resistant strains, Streptococcus pneumoniae including penicillin-resistant strains, Clostridium perfringens, Neisseria spp., Moraxella catarrhalis, most members of the family Enterobacteriaceae, and Haemophilus influenzae (MIC at which 90% of strains are inhibited, < or =0.006 to 0.78 microg/ml). R-95867 was quite stable to hydrolysis by most of the beta-lactamases tested except the metallo-beta-lactamases from Stenotrophomonas maltophilia and Bacteroides fragilis. R-95867 showed potent bactericidal activity against S. aureus and Escherichia coli. Penicillin-binding proteins 1 and 4 of S. aureus and 1Bs, 2, 3, and 4 of E. coli had high affinities for R-95867. The in vivo efficacy of CS-834 was evaluated in murine systemic infections caused by 16 strains of gram-positive and -negative pathogens. The efficacy of CS-834 was in many cases superior to those of cefteram pivoxil, cefpodoxime proxetil, cefdinir, and cefditoren pivoxil, especially against infections caused by S. aureus, penicillin-resistant S. pneumoniae, E. coli, Citrobacter freundii, and Proteus vulgaris. Among the drugs tested, CS-834 showed the highest efficacy against experimental pneumonia in mice caused by penicillin-resistant S. pneumoniae.
Full Text
The Full Text of this article is available as a PDF (212.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Appelbaum P. C. Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin Infect Dis. 1992 Jul;15(1):77–83. doi: 10.1093/clinids/15.1.77. [DOI] [PubMed] [Google Scholar]
- Bliss C. I. THE METHOD OF PROBITS. Science. 1934 Jan 12;79(2037):38–39. doi: 10.1126/science.79.2037.38. [DOI] [PubMed] [Google Scholar]
- Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caputo G. M., Appelbaum P. C., Liu H. H. Infections due to penicillin-resistant pneumococci. Clinical, epidemiologic, and microbiologic features. Arch Intern Med. 1993 Jun 14;153(11):1301–1310. [PubMed] [Google Scholar]
- Fujii-Kuriyama Y., Yamamoto M., Sugawara S. Purification and properties of beta-lactamase from Proteus morganii. J Bacteriol. 1977 Sep;131(3):726–734. doi: 10.1128/jb.131.3.726-734.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georgopapadakou N. H., Dix B. A., Mauriz Y. R. Possible physiological functions of penicillin-binding proteins in Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Feb;29(2):333–336. doi: 10.1128/aac.29.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neu H. C., Chin N. X., Saha G., Labthavikul P. In vitro activity against aerobic and anaerobic gram-positive and gram-negative bacteria and beta-lactamase stability of RS-533, a novel carbapenem. Antimicrob Agents Chemother. 1986 Dec;30(6):828–834. doi: 10.1128/aac.30.6.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neu H. C., Labthavikul P. Comparative in vitro activity of N-formimidoyl thienamycin against gram-positive and gram-negative aerobic and anaerobic species and its beta-lactamase stability. Antimicrob Agents Chemother. 1982 Jan;21(1):180–187. doi: 10.1128/aac.21.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neu H. C., Novelli A., Chin N. X. In vitro activity and beta-lactamase stability of a new carbapenem, SM-7338. Antimicrob Agents Chemother. 1989 Jul;33(7):1009–1018. doi: 10.1128/aac.33.7.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neu H. C., Saha G., Chin N. X. Comparative in vitro activity and beta-lactamase stability of FK482, a new oral cephalosporin. Antimicrob Agents Chemother. 1989 Oct;33(10):1795–1800. doi: 10.1128/aac.33.10.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neu H. C. The crisis in antibiotic resistance. Science. 1992 Aug 21;257(5073):1064–1073. doi: 10.1126/science.257.5073.1064. [DOI] [PubMed] [Google Scholar]
- Okamoto S., Hamana Y., Inoue M., Mitsuhashi S. In vitro and in vivo antibacterial activities of T-2588, a new oral cephalosporin, compared with those of other oral beta-lactam antibiotics. Antimicrob Agents Chemother. 1987 Jul;31(7):1111–1116. doi: 10.1128/aac.31.7.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders C. C. beta-Lactamases of gram-negative bacteria: new challenges for new drugs. Clin Infect Dis. 1992 May;14(5):1089–1099. doi: 10.1093/clinids/14.5.1089. [DOI] [PubMed] [Google Scholar]
- Spika J. S., Facklam R. R., Plikaytis B. D., Oxtoby M. J. Antimicrobial resistance of Streptococcus pneumoniae in the United States, 1979-1987. The Pneumococcal Surveillance Working Group. J Infect Dis. 1991 Jun;163(6):1273–1278. doi: 10.1093/infdis/163.6.1273. [DOI] [PubMed] [Google Scholar]
- Spratt B. G. Properties of the penicillin-binding proteins of Escherichia coli K12,. Eur J Biochem. 1977 Jan;72(2):341–352. doi: 10.1111/j.1432-1033.1977.tb11258.x. [DOI] [PubMed] [Google Scholar]
- Tajima M., Takenouchi Y., Ohya S., Sugawara S. Purification and properties of beta-lactamase from Proteus vulgaris. Microbiol Immunol. 1982;26(6):531–534. doi: 10.1111/j.1348-0421.1982.tb00206.x. [DOI] [PubMed] [Google Scholar]
- Tajima M., Takenouchi Y., Sugawara S., Inoue M., Mitsuhashi S. Purification and properties of chromosomally mediated beta-lactamase from Citrobacter freundii GN7391. J Gen Microbiol. 1980 Dec;121(2):449–456. doi: 10.1099/00221287-121-2-449. [DOI] [PubMed] [Google Scholar]
- Takenouchi T., Utsui Y., Ohya S., Nishino T. Role of beta-lactamase of methicillin-susceptible Staphylococcus aureus in resistance to first-generation oral cephems both in vitro and in vivo. J Antimicrob Chemother. 1994 Dec;34(6):909–920. doi: 10.1093/jac/34.6.909. [DOI] [PubMed] [Google Scholar]
- Tamura A., Okamoto R., Yoshida T., Yamamoto H., Kondo S., Inoue M., Mitsuhashi S. In vitro and in vivo antibacterial activities of ME1207, a new oral cephalosporin. Antimicrob Agents Chemother. 1988 Sep;32(9):1421–1426. doi: 10.1128/aac.32.9.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Utsui Y., Inoue M., Mitsuhashi S. In vitro and in vivo antibacterial activities of CS-807, a new oral cephalosporin. Antimicrob Agents Chemother. 1987 Jul;31(7):1085–1092. doi: 10.1128/aac.31.7.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Utsui Y., Yokota T. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1985 Sep;28(3):397–403. doi: 10.1128/aac.28.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waley S. G. A spectrophotometric assay of beta-lactamase action on penicillins. Biochem J. 1974 Jun;139(3):789–790. doi: 10.1042/bj1390789. [DOI] [PMC free article] [PubMed] [Google Scholar]
