Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Dec;41(12):2680–2685. doi: 10.1128/aac.41.12.2680

Lobucavir is phosphorylated in human cytomegalovirus-infected and -uninfected cells and inhibits the viral DNA polymerase.

D J Tenney 1, G Yamanaka 1, S M Voss 1, C W Cianci 1, A V Tuomari 1, A K Sheaffer 1, M Alam 1, R J Colonno 1
PMCID: PMC164188  PMID: 9420038

Abstract

Lobucavir (LBV) is a deoxyguanine nucleoside analog with broad-spectrum antiviral activity. LBV was previously shown to inhibit herpes simplex virus (HSV) DNA polymerase after phosphorylation by the HSV thymidine kinase. Here we determined the mechanism of action of LBV against human cytomegalovirus (HCMV). LBV inhibited HCMV DNA synthesis to a degree comparable to that of ganciclovir (GCV), a drug known to target the viral DNA polymerase. The expression of late proteins and RNA, dependent on viral DNA synthesis, was also inhibited by LBV. Immediate-early and early HCMV gene expression was unaffected, suggesting that LBV acts temporally coincident with HCMV DNA synthesis and not through cytotoxicity. In vitro, the triphosphate of LBV was a potent inhibitor of HCMV DNA polymerase with a Ki of 5 nM. LBV was phosphorylated to its triphosphate form intracellularly in both infected and uninfected cells, with phosphorylated metabolite levels two- to threefold higher in infected cells. GCV-resistant HCMV isolates, with deficient GCV phosphorylation due to mutations in the UL97 protein kinase, remained sensitive to LBV. Overall, these results suggest that LBV-triphosphate halts HCMV DNA replication by inhibiting the viral DNA polymerase and that LBV phosphorylation can occur in the absence of viral factors including the UL97 protein kinase. Furthermore, LBV may be effective in the treatment of GCV-resistant HCMV.

Full Text

The Full Text of this article is available as a PDF (985.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biron K. K. Cytomegalovirus: genetics of drug resistance. Adv Exp Med Biol. 1996;394:135–143. doi: 10.1007/978-1-4757-9209-6_14. [DOI] [PubMed] [Google Scholar]
  2. Biron K. K., Fyfe J. A., Stanat S. C., Leslie L. K., Sorrell J. B., Lambe C. U., Coen D. M. A human cytomegalovirus mutant resistant to the nucleoside analog 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine (BW B759U) induces reduced levels of BW B759U triphosphate. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8769–8773. doi: 10.1073/pnas.83.22.8769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biron K. K., Stanat S. C., Sorrell J. B., Fyfe J. A., Keller P. M., Lambe C. U., Nelson D. J. Metabolic activation of the nucleoside analog 9-[( 2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine in human diploid fibroblasts infected with human cytomegalovirus. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2473–2477. doi: 10.1073/pnas.82.8.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braitman A., Swerdel M. R., Olsen S. J., Tuomari A. V., Lynch J. S., Blue B., Michalik T., Field A. K., Bonner D. P., Clark J. M. Evaluation of SQ 34,514: pharmacokinetics and efficacy in experimental herpesvirus infections in mice. Antimicrob Agents Chemother. 1991 Jul;35(7):1464–1468. doi: 10.1128/aac.35.7.1464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A., 3rd, Kouzarides T., Martignetti J. A. Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol. 1990;154:125–169. doi: 10.1007/978-3-642-74980-3_6. [DOI] [PubMed] [Google Scholar]
  6. Chee M. S., Lawrence G. L., Barrell B. G. Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. J Gen Virol. 1989 May;70(Pt 5):1151–1160. doi: 10.1099/0022-1317-70-5-1151. [DOI] [PubMed] [Google Scholar]
  7. Chou S., Erice A., Jordan M. C., Vercellotti G. M., Michels K. R., Talarico C. L., Stanat S. C., Biron K. K. Analysis of the UL97 phosphotransferase coding sequence in clinical cytomegalovirus isolates and identification of mutations conferring ganciclovir resistance. J Infect Dis. 1995 Mar;171(3):576–583. doi: 10.1093/infdis/171.3.576. [DOI] [PubMed] [Google Scholar]
  8. Clement J. J., Kern E. R. Cyclobutyl compounds as antiviral agents. Transplant Proc. 1991 Jun;23(3 Suppl 3):159–161. [PubMed] [Google Scholar]
  9. Crumpacker C. S. Ganciclovir. N Engl J Med. 1996 Sep 5;335(10):721–729. doi: 10.1056/NEJM199609053351007. [DOI] [PubMed] [Google Scholar]
  10. Depto A. S., Stenberg R. M. Regulated expression of the human cytomegalovirus pp65 gene: octamer sequence in the promoter is required for activation by viral gene products. J Virol. 1989 Mar;63(3):1232–1238. doi: 10.1128/jvi.63.3.1232-1238.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Elion G. B., Furman P. A., Fyfe J. A., de Miranda P., Beauchamp L., Schaeffer H. J. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5716–5720. doi: 10.1073/pnas.74.12.5716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Erice A., Chou S., Biron K. K., Stanat S. C., Balfour H. H., Jr, Jordan M. C. Progressive disease due to ganciclovir-resistant cytomegalovirus in immunocompromised patients. N Engl J Med. 1989 Feb 2;320(5):289–293. doi: 10.1056/NEJM198902023200505. [DOI] [PubMed] [Google Scholar]
  13. Field A. K., Tuomari A. V., McGeever-Rubin B., Terry B. J., Mazina K. E., Haffey M. L., Hagen M. E., Clark J. M., Braitman A., Slusarchyk W. A. (+-)-(1 alpha,2 beta,3 alpha)-9-[2,3-bis(hydroxymethyl)-cyclobutyl] guanine [(+-)-BHCG or SQ 33,054]: a potent and selective inhibitor of herpesviruses. Antiviral Res. 1990 Jan;13(1):41–52. doi: 10.1016/0166-3542(90)90043-7. [DOI] [PubMed] [Google Scholar]
  14. Freitas V. R., Smee D. F., Chernow M., Boehme R., Matthews T. R. Activity of 9-(1,3-dihydroxy-2-propoxymethyl)guanine compared with that of acyclovir against human, monkey, and rodent cytomegaloviruses. Antimicrob Agents Chemother. 1985 Aug;28(2):240–245. doi: 10.1128/aac.28.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fyfe J. A. Differential phosphorylation of (E)-5-(2-bromovinyl)-2'-deoxyuridine monophosphate by thymidylate kinases from herpes simplex viruses types 1 and 2 and varicella zoster virus. Mol Pharmacol. 1982 Mar;21(2):432–437. [PubMed] [Google Scholar]
  16. Hayashi S., Norbeck D. W., Rosenbrook W., Fine R. L., Matsukura M., Plattner J. J., Broder S., Mitsuya H. Cyclobut-A and cyclobut-G, carbocyclic oxetanocin analogs that inhibit the replication of human immunodeficiency virus in T cells and monocytes and macrophages in vitro. Antimicrob Agents Chemother. 1990 Feb;34(2):287–294. doi: 10.1128/aac.34.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. He Z., He Y. S., Kim Y., Chu L., Ohmstede C., Biron K. K., Coen D. M. The human cytomegalovirus UL97 protein is a protein kinase that autophosphorylates on serines and threonines. J Virol. 1997 Jan;71(1):405–411. doi: 10.1128/jvi.71.1.405-411.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hung L. F., Brumbaugh A. E., Bhatia G., Marion P. L., Hung P. P., Norbeck D. W., Plattner J. J., Robinson W. S. Effects of purine nucleoside analogues with a cyclobutane ring and erythromycin A oxime derivatives on duck hepatitis B virus replication in vivo and in cell culture and HIV-1 in cell culture. J Med Virol. 1991 Nov;35(3):180–186. doi: 10.1002/jmv.1890350307. [DOI] [PubMed] [Google Scholar]
  19. Innaimo S. F., Seifer M., Bisacchi G. S., Standring D. N., Zahler R., Colonno R. J. Identification of BMS-200475 as a potent and selective inhibitor of hepatitis B virus. Antimicrob Agents Chemother. 1997 Jul;41(7):1444–1448. doi: 10.1128/aac.41.7.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Izuta S., Shimada N., Kitagawa M., Suzuki M., Kojima K., Yoshida S. Inhibitory effects of triphosphate derivatives of oxetanocin G and related compounds on eukaryotic and viral DNA polymerases and human immunodeficiency virus reverse transcriptase. J Biochem. 1992 Jul;112(1):81–87. doi: 10.1093/oxfordjournals.jbchem.a123870. [DOI] [PubMed] [Google Scholar]
  21. Kouzarides T., Bankier A. T., Satchwell S. C., Weston K., Tomlinson P., Barrell B. G. Large-scale rearrangement of homologous regions in the genomes of HCMV and EBV. Virology. 1987 Apr;157(2):397–413. doi: 10.1016/0042-6822(87)90282-0. [DOI] [PubMed] [Google Scholar]
  22. Koyano S., Suzutani T., Yoshida I., Azuma M. Analysis of phosphorylation pathways of antiherpesvirus nucleosides by varicella-zoster virus-specific enzymes. Antimicrob Agents Chemother. 1996 Apr;40(4):920–923. doi: 10.1128/aac.40.4.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Littler E., Stuart A. D., Chee M. S. Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature. 1992 Jul 9;358(6382):160–162. doi: 10.1038/358160a0. [DOI] [PubMed] [Google Scholar]
  24. Lurain N. S., Spafford L. E., Thompson K. D. Mutation in the UL97 open reading frame of human cytomegalovirus strains resistant to ganciclovir. J Virol. 1994 Jul;68(7):4427–4431. doi: 10.1128/jvi.68.7.4427-4431.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lurain N. S., Thompson K. D., Holmes E. W., Read G. S. Point mutations in the DNA polymerase gene of human cytomegalovirus that result in resistance to antiviral agents. J Virol. 1992 Dec;66(12):7146–7152. doi: 10.1128/jvi.66.12.7146-7152.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mar E. C., Cheng Y. C., Huang E. S. Effect of 9-(1,3-dihydroxy-2-propoxymethyl)guanine on human cytomegalovirus replication in vitro. Antimicrob Agents Chemother. 1983 Oct;24(4):518–521. doi: 10.1128/aac.24.4.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mar E. C., Chiou J. F., Cheng Y. C., Huang E. S. Inhibition of cellular DNA polymerase alpha and human cytomegalovirus-induced DNA polymerase by the triphosphates of 9-(2-hydroxyethoxymethyl)guanine and 9-(1,3-dihydroxy-2-propoxymethyl)guanine. J Virol. 1985 Mar;53(3):776–780. doi: 10.1128/jvi.53.3.776-780.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Martin J. C., Dvorak C. A., Smee D. F., Matthews T. R., Verheyden J. P. 9-[(1,3-Dihydroxy-2-propoxy)methyl]guanine: a new potent and selective antiherpes agent. J Med Chem. 1983 May;26(5):759–761. doi: 10.1021/jm00359a023. [DOI] [PubMed] [Google Scholar]
  29. Martinez J., Lahijani R. S., St Jeor S. C. Analysis of a region of the human cytomegalovirus (AD169) genome coding for a 25-kilodalton virion protein. J Virol. 1989 Jan;63(1):233–241. doi: 10.1128/jvi.63.1.233-241.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maruyama T., Hanai Y., Sato Y., Snoeck R., Andrei G., Hosoya M., Balzarini J., De Clercq E. Synthesis and antiviral activity of carbocyclic oxetanocin analogues (C-OXT-A, C-OXT-G) and related compounds. II. Chem Pharm Bull (Tokyo) 1993 Mar;41(3):516–521. doi: 10.1248/cpb.41.516. [DOI] [PubMed] [Google Scholar]
  31. Maruyama T., Sato Y., Horii T., Shiota H., Nitta K., Shirasaka T., Mitsuya H., Honjo M. Synthesis and antiviral activities of carbocyclic oxetanocin analogues. Chem Pharm Bull (Tokyo) 1990 Oct;38(10):2719–2725. doi: 10.1248/cpb.38.2719. [DOI] [PubMed] [Google Scholar]
  32. Metzger C., Michel D., Schneider K., Lüske A., Schlicht H. J., Mertens T. Human cytomegalovirus UL97 kinase confers ganciclovir susceptibility to recombinant vaccinia virus. J Virol. 1994 Dec;68(12):8423–8427. doi: 10.1128/jvi.68.12.8423-8427.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Michel D., Pavić I., Zimmermann A., Haupt E., Wunderlich K., Heuschmid M., Mertens T. The UL97 gene product of human cytomegalovirus is an early-late protein with a nuclear localization but is not a nucleoside kinase. J Virol. 1996 Sep;70(9):6340–6346. doi: 10.1128/jvi.70.9.6340-6346.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nishiyama Y., Yamamoto N., Yamada Y., Daikoku T., Ichikawa Y., Takahashi K. Anti-herpesvirus activity of carbocyclic oxetanocin G in vitro. J Antibiot (Tokyo) 1989 Dec;42(12):1854–1859. doi: 10.7164/antibiotics.42.1854. [DOI] [PubMed] [Google Scholar]
  35. Norbeck D. W., Kern E., Hayashi S., Rosenbrook W., Sham H., Herrin T., Plattner J. J., Erickson J., Clement J., Swanson R. Cyclobut-A and cyclobut-G: broad-spectrum antiviral agents with potential utility for the therapy of AIDS. J Med Chem. 1990 May;33(5):1281–1285. doi: 10.1021/jm00167a002. [DOI] [PubMed] [Google Scholar]
  36. Peppel K., Baglioni C. A simple and fast method to extract RNA from tissue culture cells. Biotechniques. 1990 Dec;9(6):711–713. [PubMed] [Google Scholar]
  37. Rasmussen L., Mullenax J., Nelson R., Merigan T. C. Viral polypeptides detected by a complement-dependent neutralizing murine monoclonal antibody to human cytomegalovirus. J Virol. 1985 Aug;55(2):274–280. doi: 10.1128/jvi.55.2.274-280.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rawlinson W. D., Farrell H. E., Barrell B. G. Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol. 1996 Dec;70(12):8833–8849. doi: 10.1128/jvi.70.12.8833-8849.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rudolph S. A., Stamminger T., Jahn G. Transcriptional analysis of the eight-kilobase mRNA encoding the major capsid protein of human cytomegalovirus. J Virol. 1990 Oct;64(10):5167–5172. doi: 10.1128/jvi.64.10.5167-5172.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smee D. F., Barnett B. B., Sidwell R. W., Reist E. J., Holy A. Antiviral activities of nucleosides and nucleotides against wild-type and drug-resistant strains of murine cytomegalovirus. Antiviral Res. 1995 Jan;26(1):1–9. doi: 10.1016/0166-3542(94)00061-c. [DOI] [PubMed] [Google Scholar]
  41. Smith R. F., Smith T. F. Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein-Barr virus. J Virol. 1989 Jan;63(1):450–455. doi: 10.1128/jvi.63.1.450-455.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stanat S. C., Reardon J. E., Erice A., Jordan M. C., Drew W. L., Biron K. K. Ganciclovir-resistant cytomegalovirus clinical isolates: mode of resistance to ganciclovir. Antimicrob Agents Chemother. 1991 Nov;35(11):2191–2197. doi: 10.1128/aac.35.11.2191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stenberg R. M., Depto A. S., Fortney J., Nelson J. A. Regulated expression of early and late RNAs and proteins from the human cytomegalovirus immediate-early gene region. J Virol. 1989 Jun;63(6):2699–2708. doi: 10.1128/jvi.63.6.2699-2708.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sullivan V., Biron K. K., Talarico C., Stanat S. C., Davis M., Pozzi L. M., Coen D. M. A point mutation in the human cytomegalovirus DNA polymerase gene confers resistance to ganciclovir and phosphonylmethoxyalkyl derivatives. Antimicrob Agents Chemother. 1993 Jan;37(1):19–25. doi: 10.1128/aac.37.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sullivan V., Talarico C. L., Stanat S. C., Davis M., Coen D. M., Biron K. K. A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature. 1992 Jul 9;358(6382):162–164. doi: 10.1038/358162a0. [DOI] [PubMed] [Google Scholar]
  46. Tenney D. J., Colberg-Poley A. M. Expression of the human cytomegalovirus UL36-38 immediate early region during permissive infection. Virology. 1991 May;182(1):199–210. doi: 10.1016/0042-6822(91)90663-v. [DOI] [PubMed] [Google Scholar]
  47. Tenney D. J., Colberg-Poley A. M. Human cytomegalovirus UL36-38 and US3 immediate-early genes: temporally regulated expression of nuclear, cytoplasmic, and polysome-associated transcripts during infection. J Virol. 1991 Dec;65(12):6724–6734. doi: 10.1128/jvi.65.12.6724-6734.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tenney D. J., Micheletti P. A., Stevens J. T., Hamatake R. K., Matthews J. T., Sanchez A. R., Hurlburt W. W., Bifano M., Cordingley M. G. Mutations in the C terminus of herpes simplex virus type 1 DNA polymerase can affect binding and stimulation by its accessory protein UL42 without affecting basal polymerase activity. J Virol. 1993 Jan;67(1):543–547. doi: 10.1128/jvi.67.1.543-547.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Terry B. J., Cianci C. W., Hagen M. E. Inhibition of herpes simplex virus type 1 DNA polymerase by [1R(1 alpha,2 beta,3 alpha)]-9-[2,3-bis(hydroxymethyl)cyclobutyl] guanine. Mol Pharmacol. 1991 Oct;40(4):591–596. [PubMed] [Google Scholar]
  50. Wahren B., Larsson A., Rudén U., Sundqvist A., Sølver E. Acyclic guanosine analogs as inhibitors of human cytomegalovirus. Antimicrob Agents Chemother. 1987 Feb;31(2):317–320. doi: 10.1128/aac.31.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yamanaka G., Tuomari A. V., Hagen M., McGeever-Rubin B., Terry B., Haffey M., Bisacchi G. S., Field A. K. Selective activity and cellular pharmacology of (1R-1 alpha,2 beta,3 alpha)-9-[2,3-bis(hydroxymethyl)cyclobutyl]guanine in herpesvirus-infected cells. Mol Pharmacol. 1991 Sep;40(3):446–453. [PubMed] [Google Scholar]
  52. Yang H., Drain R. L., Franco C. A., Clark J. M. Efficacy of BMS-180194 against experimental cytomegalovirus infections in immunocompromised mice. Antiviral Res. 1996 Mar;29(2-3):233–241. doi: 10.1016/0166-3542(95)00901-9. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES