Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Dec;41(12):2724–2728. doi: 10.1128/aac.41.12.2724

Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes.

A Occhialini 1, M Urdaci 1, F Doucet-Populaire 1, C M Bébéar 1, H Lamouliatte 1, F Mégraud 1
PMCID: PMC164196  PMID: 9420046

Abstract

Resistance of Helicobacter pylori to macrolides is a major cause of failure of eradication therapies. Single base substitutions in the H. pylori 23S rRNA genes have been associated with macrolide resistance in the United States. Our goal was to extend this work to European strains, to determine the consequence of this mutation on erythromycin binding to H. pylori ribosomes, and to find a quick method to detect the mutation. Seven pairs of H. pylori strains were used, the parent strain being naturally susceptible to macrolides and the second strain having acquired an in vivo resistance during a treatment regimen that included clarithromycin. The identity of the strains was confirmed by random amplified polymorphic DNA testing with two different primers, indicating that resistance was the result of the selection of variants of the infecting strain. All resistant strains were found to have point mutations at position 2143 (three cases) or 2144 (four cases) but never on the opposite DNA fragment of domain V of the 23S rRNA gene. The mutation was A-->G in all cases except one (A-->C) at position 2143. Using BsaI and BbsI restriction enzymes on the amplified products, we confirmed the mutations of A-->G at positions 2144 and 2143, respectively. Macrolide binding was tested on purified ribosomes isolated from four pairs of strains with [14C]erythromycin. Erythromycin binding increased in a dose-dependent manner for the susceptible strain but not for the resistant one. In conclusion we suggest that the limited disruption of the peptidyltransferase loop conformation, caused by a point mutation, reduces drug binding and consequently confers resistance to macrolides. Finally, the macrolide resistance could be detected without sequencing by performing restriction fragment length polymorphism with appropriate restriction enzymes.

Full Text

The Full Text of this article is available as a PDF (540.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akopyanz N., Bukanov N. O., Westblom T. U., Kresovich S., Berg D. E. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 1992 Oct 11;20(19):5137–5142. doi: 10.1093/nar/20.19.5137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arthur M., Molinas C., Mabilat C., Courvalin P. Detection of erythromycin resistance by the polymerase chain reaction using primers in conserved regions of erm rRNA methylase genes. Antimicrob Agents Chemother. 1990 Oct;34(10):2024–2026. doi: 10.1128/aac.34.10.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bukanov N. O., Berg D. E. Ordered cosmid library and high-resolution physical-genetic map of Helicobacter pylori strain NCTC11638. Mol Microbiol. 1994 Feb;11(3):509–523. doi: 10.1111/j.1365-2958.1994.tb00332.x. [DOI] [PubMed] [Google Scholar]
  4. Cornaglia G., Ligozzi M., Mazzariol A., Valentini M., Orefici G., Fontana R. Rapid increase of resistance to erythromycin and clindamycin in Streptococcus pyogenes in Italy, 1993-1995. The Italian Surveillance Group for Antimicrobial Resistance. Emerg Infect Dis. 1996 Oct-Dec;2(4):339–342. doi: 10.3201/eid0204.960410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Debets-Ossenkopp Y. J., Sparrius M., Kusters J. G., Kolkman J. J., Vandenbroucke-Grauls C. M. Mechanism of clarithromycin resistance in clinical isolates of Helicobacter pylori. FEMS Microbiol Lett. 1996 Aug 15;142(1):37–42. doi: 10.1111/j.1574-6968.1996.tb08404.x. [DOI] [PubMed] [Google Scholar]
  6. Doucet-Populaire F., Truffot-Pernot C., Grosset J., Jarlier V. Acquired resistance in Mycobacterium avium complex strains isolated from AIDS patients and beige mice during treatment with clarithromycin. J Antimicrob Chemother. 1995 Jul;36(1):129–136. doi: 10.1093/jac/36.1.129. [DOI] [PubMed] [Google Scholar]
  7. Douthwaite S. Functional interactions within 23S rRNA involving the peptidyltransferase center. J Bacteriol. 1992 Feb;174(4):1333–1338. doi: 10.1128/jb.174.4.1333-1338.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldman R. C., Kadam S. K. Binding of novel macrolide structures to macrolides-lincosamides-streptogramin B-resistant ribosomes inhibits protein synthesis and bacterial growth. Antimicrob Agents Chemother. 1989 Jul;33(7):1058–1066. doi: 10.1128/aac.33.7.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldman R. C., Zakula D., Flamm R., Beyer J., Capobianco J. Tight binding of clarithromycin, its 14-(R)-hydroxy metabolite, and erythromycin to Helicobacter pylori ribosomes. Antimicrob Agents Chemother. 1994 Jul;38(7):1496–1500. doi: 10.1128/aac.38.7.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haas C. E., Nix D. E., Schentag J. J. In vitro selection of resistant Helicobacter pylori. Antimicrob Agents Chemother. 1990 Sep;34(9):1637–1641. doi: 10.1128/aac.34.9.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leclercq R., Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother. 1991 Jul;35(7):1267–1272. doi: 10.1128/aac.35.7.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lucier T. S., Heitzman K., Liu S. K., Hu P. C. Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae. Antimicrob Agents Chemother. 1995 Dec;39(12):2770–2773. doi: 10.1128/aac.39.12.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marshall B. J., Warren J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984 Jun 16;1(8390):1311–1315. doi: 10.1016/s0140-6736(84)91816-6. [DOI] [PubMed] [Google Scholar]
  14. Meier A., Kirschner P., Springer B., Steingrube V. A., Brown B. A., Wallace R. J., Jr, Böttger E. C. Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob Agents Chemother. 1994 Feb;38(2):381–384. doi: 10.1128/aac.38.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mégraud F., Lamouliatte H. Helicobacter pylori and duodenal ulcer. Evidence suggesting causation. Dig Dis Sci. 1992 May;37(5):769–772. doi: 10.1007/BF01296437. [DOI] [PubMed] [Google Scholar]
  16. Nash K. A., Inderlied C. B. Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease. Antimicrob Agents Chemother. 1995 Dec;39(12):2625–2630. doi: 10.1128/aac.39.12.2625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pernodet J. L., Boccard F., Alegre M. T., Blondelet-Rouault M. H., Guérineau M. Resistance to macrolides, lincosamides and streptogramin type B antibiotics due to a mutation in an rRNA operon of Streptomyces ambofaciens. EMBO J. 1988 Jan;7(1):277–282. doi: 10.1002/j.1460-2075.1988.tb02810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shortridge V. D., Flamm R. K., Ramer N., Beyer J., Tanaka S. K. Novel mechanism of macrolide resistance in Streptococcus pneumoniae. Diagn Microbiol Infect Dis. 1996 Oct;26(2):73–78. doi: 10.1016/s0732-8893(96)00183-6. [DOI] [PubMed] [Google Scholar]
  19. Sigmund C. D., Morgan E. A. Erythromycin resistance due to a mutation in a ribosomal RNA operon of Escherichia coli. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5602–5606. doi: 10.1073/pnas.79.18.5602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stone G. G., Shortridge D., Flamm R. K., Versalovic J., Beyer J., Idler K., Zulawinski L., Tanaka S. K. Identification of a 23S rRNA gene mutation in clarithromycin-resistant Helicobacter pylori. Helicobacter. 1996 Dec;1(4):227–228. doi: 10.1111/j.1523-5378.1996.tb00043.x. [DOI] [PubMed] [Google Scholar]
  21. Sutcliffe J., Tait-Kamradt A., Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother. 1996 Aug;40(8):1817–1824. doi: 10.1128/aac.40.8.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thijs J. C., Van Zwet A. A., Thijs W. J., Van der Wouden E. J., Kooy A. One-week triple therapy with omeprazole, amoxycillin and tinidazole for Helicobacter pylori infection: the significance of imidazole resistance. Aliment Pharmacol Ther. 1997 Apr;11(2):305–309. doi: 10.1046/j.1365-2036.1997.155329000.x. [DOI] [PubMed] [Google Scholar]
  23. Vannuffel P., Di Giambattista M., Morgan E. A., Cocito C. Identification of a single base change in ribosomal RNA leading to erythromycin resistance. J Biol Chem. 1992 Apr 25;267(12):8377–8382. [PubMed] [Google Scholar]
  24. Versalovic J., Shortridge D., Kibler K., Griffy M. V., Beyer J., Flamm R. K., Tanaka S. K., Graham D. Y., Go M. F. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob Agents Chemother. 1996 Feb;40(2):477–480. doi: 10.1128/aac.40.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vester B., Garrett R. A. A plasmid-coded and site-directed mutation in Escherichia coli 23S RNA that confers resistance to erythromycin: implications for the mechanism of action of erythromycin. Biochimie. 1987 Aug;69(8):891–900. doi: 10.1016/0300-9084(87)90217-3. [DOI] [PubMed] [Google Scholar]
  26. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995 Mar;39(3):577–585. doi: 10.1128/AAC.39.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES