Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Dec;41(12):2738–2741. doi: 10.1128/aac.41.12.2738

Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing.

S L Fraser 1, J H Jorgensen 1
PMCID: PMC164199  PMID: 9420049

Abstract

Several Flavobacterium species, comprising a heterogeneous group of gram-negative bacilli that are capable of causing opportunistic infections in humans, have recently been reclassified as Chryseobacterium or Myroides species. Intrinsically resistant to a number of antibiotics, these organisms have been reported to be susceptible to vancomycin and certain other drugs that are normally active against gram-positive bacteria. By using the National Committee for Clinical Laboratory Standards (NCCLS) broth microdilution procedure, 58 clinical isolates of former flavobacteria (36 Chryseobacterium meningosepticum isolates, 11 C. indologenes isolates, 3 C. gleum isolates, 4 unspeciated former members of Flavobacterium group IIb, and 4 Myroides odoratum isolates) were tested with 23 antibiotics, including conventional and investigational agents. In addition, the broth microdilution results were compared to those generated by agar dilution, E-test, and disk diffusion for vancomycin and piperacillin-tazobactam. Compared to the NCCLS microdilution results, there were 7.1 and 17.9% very major errors with piperacillin-tazobactam by agar dilution and E-test, respectively. In addition, there were from 12.1 to 48.3% minor errors with both procedures with vancomycin and piperacillin-tazobactam. The very major and minor error rates were unacceptably high with disk testing of piperacillin-tazobactam; the use of enterococcal vancomycin disk breakpoints (zone diameter of > or =17 mm = susceptible) resulted in >20% minor errors but only one very major error. All of the isolates were susceptible to minocycline; over 90% were susceptible to sparfloxacin, levofloxacin, and clinafloxacin; and 88% were susceptible to rifampin. None was susceptible to vancomycin. When Chryseobacterium or Myroides species are isolated from serious infections, susceptibility testing by broth microdilution should be performed and therapy should be guided by those results.

Full Text

The Full Text of this article is available as a PDF (149.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aber R. C., Wennersten C., Moellering R. C., Jr Antimicrobial susceptibility of flavobacteria. Antimicrob Agents Chemother. 1978 Sep;14(3):483–487. doi: 10.1128/aac.14.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altmann G., Bogokovsky B. In-vitro sensitivity of Elavobacterium meningosepticum to antimicrobial agents. J Med Microbiol. 1971 May;4(2):296–299. doi: 10.1099/00222615-4-2-296. [DOI] [PubMed] [Google Scholar]
  3. Appelbaum P. C., Spangler S. K., Tamarree T. Susceptibility of 310 nonfermentative gram-negative bacteria to aztreonam, carumonam, ciprofloxacin, ofloxacin and fleroxacin. Chemotherapy. 1988;34(1):40–45. doi: 10.1159/000238546. [DOI] [PubMed] [Google Scholar]
  4. Bachman K. H., Sewell D. L., Strausbaugh L. J. Recurrent cellulitis and bacteremia caused by Flavobacterium odoratum. Clin Infect Dis. 1996 Jun;22(6):1112–1113. doi: 10.1093/clinids/22.6.1112. [DOI] [PubMed] [Google Scholar]
  5. Blahová J., Hupková M., Krcméry V., Kubonová K. Resistance to and hydrolysis of imipenem in nosocomial strains of Flavobacterium meningosepticum. Eur J Clin Microbiol Infect Dis. 1994 Oct;13(10):833–833. doi: 10.1007/BF02111348. [DOI] [PubMed] [Google Scholar]
  6. Bloch K. C., Nadarajah R., Jacobs R. Chryseobacterium meningosepticum: an emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine (Baltimore) 1997 Jan;76(1):30–41. doi: 10.1097/00005792-199701000-00003. [DOI] [PubMed] [Google Scholar]
  7. Bolash N. K., Liu H. H. Quinolone susceptibility of multiply-resistant Flavobacterium meningosepticum clinical isolates in one urban hospital. Drugs. 1995;49 (Suppl 2):168–170. doi: 10.2165/00003495-199500492-00028. [DOI] [PubMed] [Google Scholar]
  8. Bruun B. Antimicrobial susceptibility of Flavobacterium meningosepticum strains identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand B. 1987 Apr;95(2):95–101. doi: 10.1111/j.1699-0463.1987.tb03094.x. [DOI] [PubMed] [Google Scholar]
  9. Fass R. J., Barnishan J. In vitro susceptibilities of nonfermentative gram-negative bacilli other than Pseudomonas aeruginosa to 32 antimicrobial agents. Rev Infect Dis. 1980 Nov-Dec;2(6):841–853. doi: 10.1093/clinids/2.6.841. [DOI] [PubMed] [Google Scholar]
  10. Ferrer C., Jakob E., Pastorino G., Juncos L. I. Right-sided bacterial endocarditis due to Flavobacterium odoratum in a patient on chronic hemodialysis. Am J Nephrol. 1995;15(1):82–84. doi: 10.1159/000168806. [DOI] [PubMed] [Google Scholar]
  11. GEORGE R. M., COCHRAN C. P., WHEELER W. E. Epidemic meningitis of the newborn caused by flavobacteria. II. Clinical manifestations and treatment. Am J Dis Child. 1961 Mar;101:296–304. doi: 10.1001/archpedi.1961.04020040024005. [DOI] [PubMed] [Google Scholar]
  12. Holmes B., Snell J. J., Lapage S. P. Flavobacterium odoratum: a species resistant to a wide range of antimicrobial agents. J Clin Pathol. 1979 Jan;32(1):73–77. doi: 10.1136/jcp.32.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hsueh P. R., Hsiue T. R., Wu J. J., Teng L. J., Ho S. W., Hsieh W. C., Luh K. T. Flavobacterium indologenes bacteremia: clinical and microbiological characteristics. Clin Infect Dis. 1996 Sep;23(3):550–555. doi: 10.1093/clinids/23.3.550. [DOI] [PubMed] [Google Scholar]
  14. Hsueh P. R., Wu J. J., Hsiue T. R., Hsieh W. C. Bacteremic necrotizing fasciitis due to Flavobacterium odoratum. Clin Infect Dis. 1995 Nov;21(5):1337–1338. doi: 10.1093/clinids/21.5.1337. [DOI] [PubMed] [Google Scholar]
  15. Igari J., Oguri T., Higuchi T. Evaluation of minocycline and cefuzonam for antimicrobial activity against clinical isolates. Jpn J Antibiot. 1994 Aug;47(8):1013–1029. [PubMed] [Google Scholar]
  16. Jorgensen J. H., Maher L. A., Howell A. W. Activity of meropenem against antibiotic-resistant or infrequently encountered gram-negative bacilli. Antimicrob Agents Chemother. 1991 Nov;35(11):2410–2414. doi: 10.1128/aac.35.11.2410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Korzets Z., Maayan M. C., Bernheim J. Flavobacterial peritonitis in patients treated by peritoneal dialysis. Nephrol Dial Transplant. 1995;10(2):280–283. [PubMed] [Google Scholar]
  18. Lee E. L., Robinson M. J., Thong M. L., Puthucheary S. D., Ong T. H., Ng K. K. Intraventricular chemotherapy in neonatal meningitis. J Pediatr. 1977 Dec;91(6):991–995. doi: 10.1016/s0022-3476(77)80913-x. [DOI] [PubMed] [Google Scholar]
  19. Olsen H. An in vitro study of the antibiotic sensitivity of Flavobacterium meningosepticum. Acta Pathol Microbiol Scand. 1967;70(4):601–612. doi: 10.1111/j.1699-0463.1967.tb01329.x. [DOI] [PubMed] [Google Scholar]
  20. Olsen H., Ravn T. Flavobacterium meningosepticum isolated from the genitals. Acta Pathol Microbiol Scand B Microbiol Immunol. 1971;79(1):102–106. doi: 10.1111/j.1699-0463.1971.tb00039.x. [DOI] [PubMed] [Google Scholar]
  21. Sader H. S., Jones R. N., Pfaller M. A. Relapse of catheter-related Flavobacterium meningosepticum bacteremia demonstrated by DNA macrorestriction analysis. Clin Infect Dis. 1995 Oct;21(4):997–1000. doi: 10.1093/clinids/21.4.997. [DOI] [PubMed] [Google Scholar]
  22. Tizer K. B., Cervia J. S., Dunn A. M., Stavola J. J., Noel G. J. Successful combination vancomycin and rifampin therapy in a newborn with community-acquired Flavobacterium meningosepticum neonatal meningitis. Pediatr Infect Dis J. 1995 Oct;14(10):916–917. [PubMed] [Google Scholar]
  23. Yabuuchi E., Ito T., Tanimura E., Yamamoto N., Ohyama A. In vitro antimicrobial activity of ceftizoxime against glucose-nonfermentative gram-negative rods. Antimicrob Agents Chemother. 1981 Jul;20(1):136–139. doi: 10.1128/aac.20.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES