Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Dec;41(12):2776–2780. doi: 10.1128/aac.41.12.2776

Sulfated carbohydrate compounds prevent microbial adherence by sexually transmitted disease pathogens.

B C Herold 1, A Siston 1, J Bremer 1, R Kirkpatrick 1, G Wilbanks 1, P Fugedi 1, C Peto 1, M Cooper 1
PMCID: PMC164209  PMID: 9420059

Abstract

Heparan sulfate (HS) serves as a receptor for adherence of herpes simplex viruses, Chlamydia trachomatis, Neisseria gonorrhoeae, and, indirectly, human immunodeficiency virus. Using primary human culture systems, we identified sulfated carbohydrate compounds that resemble HS and competitively inhibit infection by these pathogens. These compounds are candidates for intravaginal formulations for the prevention of sexually transmitted diseases.

Full Text

The Full Text of this article is available as a PDF (159.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams D. I., Kuno S., Wong R., Jeffords K., Nash M., Molaghan J. B., Gorter R., Ueno R. Oral dextran sulfate (UA001) in the treatment of the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Ann Intern Med. 1989 Feb 1;110(3):183–188. doi: 10.7326/0003-4819-110-3-183. [DOI] [PubMed] [Google Scholar]
  2. Baba M., Pauwels R., Balzarini J., Arnout J., Desmyter J., De Clercq E. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6132–6136. doi: 10.1073/pnas.85.16.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baba M., Schols D., De Clercq E., Pauwels R., Nagy M., Györgyi-Edelényi J., Löw M., Görög S. Novel sulfated polymers as highly potent and selective inhibitors of human immunodeficiency virus replication and giant cell formation. Antimicrob Agents Chemother. 1990 Jan;34(1):134–138. doi: 10.1128/aac.34.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baba M., Snoeck R., Pauwels R., de Clercq E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother. 1988 Nov;32(11):1742–1745. doi: 10.1128/aac.32.11.1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bagasra O., Lischner H. W. Activity of dextran sulfate and other polyanionic polysaccharides against human immunodeficiency virus. J Infect Dis. 1988 Nov;158(5):1084–1087. doi: 10.1093/infdis/158.5.1084. [DOI] [PubMed] [Google Scholar]
  6. Batinić D., Robey F. A. The V3 region of the envelope glycoprotein of human immunodeficiency virus type 1 binds sulfated polysaccharides and CD4-derived synthetic peptides. J Biol Chem. 1992 Apr 5;267(10):6664–6671. [PubMed] [Google Scholar]
  7. Bourinbaiar A. S., Lee-Huang S. Comparative in vitro study of contraceptive agents with anti-HIV activity: gramicidin, nonoxynol-9, and gossypol. Contraception. 1994 Feb;49(2):131–137. doi: 10.1016/0010-7824(94)90088-4. [DOI] [PubMed] [Google Scholar]
  8. Chen J. C., Stephens R. S. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells. Mol Microbiol. 1994 Feb;11(3):501–507. doi: 10.1111/j.1365-2958.1994.tb00331.x. [DOI] [PubMed] [Google Scholar]
  9. Chen J. C., Zhang J. P., Stephens R. S. Structural requirements of heparin binding to Chlamydia trachomatis. J Biol Chem. 1996 May 10;271(19):11134–11140. [PubMed] [Google Scholar]
  10. Chen T., Belland R. J., Wilson J., Swanson J. Adherence of pilus- Opa+ gonococci to epithelial cells in vitro involves heparan sulfate. J Exp Med. 1995 Aug 1;182(2):511–517. doi: 10.1084/jem.182.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cooper M. D., Rapp J., Jeffery-Wiseman C., Barnes R. C., Stephens D. S. Chlamydia trachomatis infection of human fallopian tube organ cultures. J Gen Microbiol. 1990 Jun;136(6):1109–1115. doi: 10.1099/00221287-136-6-1109. [DOI] [PubMed] [Google Scholar]
  12. Feldblum P. J., Weir S. S. The protective effect of nonoxynol-9 against HIV infection. Am J Public Health. 1994 Jun;84(6):1032–1034. doi: 10.2105/ajph.84.6.1032-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Flexner C., Barditch-Crovo P. A., Kornhauser D. M., Farzadegan H., Nerhood L. J., Chaisson R. E., Bell K. M., Lorentsen K. J., Hendrix C. W., Petty B. G. Pharmacokinetics, toxicity, and activity of intravenous dextran sulfate in human immunodeficiency virus infection. Antimicrob Agents Chemother. 1991 Dec;35(12):2544–2550. doi: 10.1128/aac.35.12.2544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herold B. C., Gerber S. I., Belval B. J., Siston A. M., Shulman N. Differences in the susceptibility of herpes simplex virus types 1 and 2 to modified heparin compounds suggest serotype differences in viral entry. J Virol. 1996 Jun;70(6):3461–3469. doi: 10.1128/jvi.70.6.3461-3469.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herold B. C., Gerber S. I., Polonsky T., Belval B. J., Shaklee P. N., Holme K. Identification of structural features of heparin required for inhibition of herpes simplex virus type 1 binding. Virology. 1995 Feb 1;206(2):1108–1116. doi: 10.1006/viro.1995.1034. [DOI] [PubMed] [Google Scholar]
  16. Herold B. C., Visalli R. J., Susmarski N., Brandt C. R., Spear P. G. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol. 1994 Jun;75(Pt 6):1211–1222. doi: 10.1099/0022-1317-75-6-1211. [DOI] [PubMed] [Google Scholar]
  17. Herold B. C., WuDunn D., Soltys N., Spear P. G. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol. 1991 Mar;65(3):1090–1098. doi: 10.1128/jvi.65.3.1090-1098.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holland T. C., Sandri-Goldin R. M., Holland L. E., Marlin S. D., Levine M., Glorioso J. C. Physical mapping of the mutation in an antigenic variant of herpes simplex virus type 1 by use of an immunoreactive plaque assay. J Virol. 1983 May;46(2):649–652. doi: 10.1128/jvi.46.2.649-652.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ito M., Baba M., Sato A., Pauwels R., De Clercq E., Shigeta S. Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) in vitro. Antiviral Res. 1987 Jul;7(6):361–367. doi: 10.1016/0166-3542(87)90018-0. [DOI] [PubMed] [Google Scholar]
  20. Jennings R., Clegg A. The inhibitory effect of spermicidal agents on replication of HSV-2 and HIV-1 in-vitro. J Antimicrob Chemother. 1993 Jul;32(1):71–82. doi: 10.1093/jac/32.1.71. [DOI] [PubMed] [Google Scholar]
  21. Kreiss J., Ngugi E., Holmes K., Ndinya-Achola J., Waiyaki P., Roberts P. L., Ruminjo I., Sajabi R., Kimata J., Fleming T. R. Efficacy of nonoxynol 9 contraceptive sponge use in preventing heterosexual acquisition of HIV in Nairobi prostitutes. JAMA. 1992 Jul 22;268(4):477–482. [PubMed] [Google Scholar]
  22. Kuo C., Wang S., Grayston J. T. Differentiation of TRIC and LGV organisms based on enhancement of infectivity by DEAE-dextran in cell culture. J Infect Dis. 1972 Mar;125(3):313–317. doi: 10.1093/infdis/125.3.313. [DOI] [PubMed] [Google Scholar]
  23. Lopalco L., Ciccomascolo F., Lanza P., Zoppetti G., Caramazza I., Leoni F., Beretta A., Siccardi A. G. Anti-HIV type 1 properties of chemically modified heparins with diminished anticoagulant activity. AIDS Res Hum Retroviruses. 1994 Jul;10(7):787–793. doi: 10.1089/aid.1994.10.787. [DOI] [PubMed] [Google Scholar]
  24. Lorentsen K. J., Hendrix C. W., Collins J. M., Kornhauser D. M., Petty B. G., Klecker R. W., Flexner C., Eckel R. H., Lietman P. S. Dextran sulfate is poorly absorbed after oral administration. Ann Intern Med. 1989 Oct 1;111(7):561–566. doi: 10.7326/0003-4819-111-7-561. [DOI] [PubMed] [Google Scholar]
  25. Mitsuya H., Popovic M., Yarchoan R., Matsushita S., Gallo R. C., Broder S. Suramin protection of T cells in vitro against infectivity and cytopathic effect of HTLV-III. Science. 1984 Oct 12;226(4671):172–174. doi: 10.1126/science.6091268. [DOI] [PubMed] [Google Scholar]
  26. Neyts J., De Clercq E. Effect of polyanionic compounds on intracutaneous and intravaginal herpesvirus infection in mice: impact on the search for vaginal microbicides with anti-HIV activity. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Sep 1;10(1):8–12. [PubMed] [Google Scholar]
  27. Ohshiro Y., Murakami T., Matsuda K., Nishioka K., Yoshida K., Yamamoto N. Role of cell surface glycosaminoglycans of human T cells in human immunodeficiency virus type-1 (HIV-1) infection. Microbiol Immunol. 1996;40(11):827–835. doi: 10.1111/j.1348-0421.1996.tb01148.x. [DOI] [PubMed] [Google Scholar]
  28. Patel M., Yanagishita M., Roderiquez G., Bou-Habib D. C., Oravecz T., Hascall V. C., Norcross M. A. Cell-surface heparan sulfate proteoglycan mediates HIV-1 infection of T-cell lines. AIDS Res Hum Retroviruses. 1993 Feb;9(2):167–174. doi: 10.1089/aid.1993.9.167. [DOI] [PubMed] [Google Scholar]
  29. Patton D. L., Halbert S. A., Kuo C. C., Wang S. P., Holmes K. K. Host response to primary Chlamydia trachomatis infection of the fallopian tube in pig-tailed monkeys. Fertil Steril. 1983 Dec;40(6):829–840. [PubMed] [Google Scholar]
  30. Patton D. L., Kuo C. C., Wang S. P., Halbert S. A. Distal tubal obstruction induced by repeated Chlamydia trachomatis salpingeal infections in pig-tailed macaques. J Infect Dis. 1987 Jun;155(6):1292–1299. doi: 10.1093/infdis/155.6.1292. [DOI] [PubMed] [Google Scholar]
  31. Piot P., Islam M. Q. Sexually transmitted diseases in the 1990s. Global epidemiology and challenges for control. Sex Transm Dis. 1994 Mar-Apr;21(2 Suppl):S7–13. [PubMed] [Google Scholar]
  32. Roderiquez G., Oravecz T., Yanagishita M., Bou-Habib D. C., Mostowski H., Norcross M. A. Mediation of human immunodeficiency virus type 1 binding by interaction of cell surface heparan sulfate proteoglycans with the V3 region of envelope gp120-gp41. J Virol. 1995 Apr;69(4):2233–2239. doi: 10.1128/jvi.69.4.2233-2239.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roller R. J., Herold B. C. Characterization of a BHK(TK-) cell clone resistant to postattachment entry by herpes simplex virus types 1 and 2. J Virol. 1997 Aug;71(8):5805–5813. doi: 10.1128/jvi.71.8.5805-5813.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rostand K. S., Esko J. D. Microbial adherence to and invasion through proteoglycans. Infect Immun. 1997 Jan;65(1):1–8. doi: 10.1128/iai.65.1.1-8.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shieh M. T., WuDunn D., Montgomery R. I., Esko J. D., Spear P. G. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol. 1992 Mar;116(5):1273–1281. doi: 10.1083/jcb.116.5.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Singh J., Wagner E. K. Herpes simplex virus recombination vectors designed to allow insertion of modified promoters into transcriptionally "neutral" segments of the viral genome. Virus Genes. 1995;10(2):127–136. doi: 10.1007/BF01702593. [DOI] [PubMed] [Google Scholar]
  37. Stanley M. A., Parkinson E. K. Growth requirements of human cervical epithelial cells in culture. Int J Cancer. 1979 Oct 15;24(4):407–414. doi: 10.1002/ijc.2910240406. [DOI] [PubMed] [Google Scholar]
  38. Stephens R. S. Molecular mimicry and Chlamydia trachomatis infection of eukaryotic cells. Trends Microbiol. 1994 Mar;2(3):99–101. doi: 10.1016/0966-842x(94)90543-6. [DOI] [PubMed] [Google Scholar]
  39. Stratton P., Alexander N. J. Prevention of sexually transmitted infections. Physical and chemical barrier methods. Infect Dis Clin North Am. 1993 Dec;7(4):841–859. [PubMed] [Google Scholar]
  40. Su H., Raymond L., Rockey D. D., Fischer E., Hackstadt T., Caldwell H. D. A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11143–11148. doi: 10.1073/pnas.93.20.11143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Swain S. M., Parker B., Wellstein A., Lippman M. E., Steakley C., DeLap R. Phase I trial of pentosan polysulfate. Invest New Drugs. 1995;13(1):55–62. doi: 10.1007/BF02614221. [DOI] [PubMed] [Google Scholar]
  42. Turyk M. E., Golub T. R., Wood N. B., Hawkins J. L., Wilbanks G. D. Growth and characterization of epithelial cells from normal human uterine ectocervix and endocervix. In Vitro Cell Dev Biol. 1989 Jun;25(6):544–556. doi: 10.1007/BF02623567. [DOI] [PubMed] [Google Scholar]
  43. Weir S. S., Feldblum P. J., Zekeng L., Roddy R. E. The use of nonoxynol-9 for protection against cervical gonorrhea. Am J Public Health. 1994 Jun;84(6):910–914. doi: 10.2105/ajph.84.6.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. WuDunn D., Spear P. G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol. 1989 Jan;63(1):52–58. doi: 10.1128/jvi.63.1.52-58.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zaretzky F. R., Pearce-Pratt R., Phillips D. M. Sulfated polyanions block Chlamydia trachomatis infection of cervix-derived human epithelia. Infect Immun. 1995 Sep;63(9):3520–3526. doi: 10.1128/iai.63.9.3520-3526.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zekeng L., Feldblum P. J., Oliver R. M., Kaptue L. Barrier contraceptive use and HIV infection among high-risk women in Cameroon. AIDS. 1993 May;7(5):725–731. doi: 10.1097/00002030-199305000-00018. [DOI] [PubMed] [Google Scholar]
  47. Zhang J. P., Stephens R. S. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell. 1992 May 29;69(5):861–869. doi: 10.1016/0092-8674(92)90296-o. [DOI] [PubMed] [Google Scholar]
  48. van Putten J. P., Paul S. M. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 1995 May 15;14(10):2144–2154. doi: 10.1002/j.1460-2075.1995.tb07208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES