Skip to main content
Skull Base Surgery logoLink to Skull Base Surgery
. 1997;7(3):123–128. doi: 10.1055/s-2008-1058603

An Experimental Model of Intraoperative Venous Injury in the Rat

Hiroyuki Nakase, Kiyoshi Nagata, Hiroyuki Ohtsuka, Toshisuke Sakaki, Oliver Kempski
PMCID: PMC1656632  PMID: 17171021

Abstract

Intraoperative obliteration of cerebral veins occasionally causes unexpected severe complications, especially in elderly patients. However, very title information is available on the pathophysiology of cerebral venous circulation disturbance. Occlusion of cortical veins in rats by a photochemical thrombotic technique is a less invasive, clinically relevant and reproducible model that is suitable for the study of venous circulation disturbance. In the present study, 54 male Wistar rats were used. We examined changes of the cerebral venous flow pattern by fluorescence anglography and brain damage histologically in a one- or two-(cortical) vein occlusion model using a photochemical thrombotic technique. Approximately 30% (9 of 27) of animals in the single-vein occlusion group and 90% (15 of 17) of those in the two-vein occlusion group had microcirculation perturbation, which results very soon in the formation of venous thrombus accompanied by severe venous infarction. In addition, infarction size in the two-vein occlusion group (9.7 ± 3.2%) was significantly larger than in the single-vein group (2.9 ± 1.3%) (unpaired T-test, P < 0.01).

In conclusion, the photochemical dye technique of attaining cerebral venous occlusion is a worth while addition to the study of circulation perturbations of the brain.

Full text

PDF
123

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dietrich W. D., Feng Z. C., Leistra H., Watson B. D., Rosenthal M. Photothrombotic infarction triggers multiple episodes of cortical spreading depression in distant brain regions. J Cereb Blood Flow Metab. 1994 Jan;14(1):20–28. doi: 10.1038/jcbfm.1994.4. [DOI] [PubMed] [Google Scholar]
  2. Frerichs K. U., Deckert M., Kempski O., Schürer L., Einhäupl K., Baethmann A. Cerebral sinus and venous thrombosis in rats induces long-term deficits in brain function and morphology--evidence for a cytotoxic genesis. J Cereb Blood Flow Metab. 1994 Mar;14(2):289–300. doi: 10.1038/jcbfm.1994.36. [DOI] [PubMed] [Google Scholar]
  3. Fries G., Wallenfang T., Hennen J., Velthaus M., Heimann A., Schild H., Perneczky A., Kempski O. Occlusion of the pig superior sagittal sinus, bridging and cortical veins: multistep evolution of sinus-vein thrombosis. J Neurosurg. 1992 Jul;77(1):127–133. doi: 10.3171/jns.1992.77.1.0127. [DOI] [PubMed] [Google Scholar]
  4. Gotoh M., Ohmoto T., Kuyama H. Experimental study of venous circulatory disturbance by dural sinus occlusion. Acta Neurochir (Wien) 1993;124(2-4):120–126. doi: 10.1007/BF01401133. [DOI] [PubMed] [Google Scholar]
  5. Nakase H., Heimann A., Kempski O. Alterations of regional cerebral blood flow and oxygen saturation in a rat sinus-vein thrombosis model. Stroke. 1996 Apr;27(4):720–728. doi: 10.1161/01.str.27.4.720. [DOI] [PubMed] [Google Scholar]
  6. Nakase H., Heimann A., Kempski O. Local cerebral blood flow in a rat cortical vein occlusion model. J Cereb Blood Flow Metab. 1996 Jul;16(4):720–728. doi: 10.1097/00004647-199607000-00024. [DOI] [PubMed] [Google Scholar]
  7. Nakase H., Kakizaki T., Miyamoto K., Hiramatsu K., Sakaki T. Use of local cerebral blood flow monitoring to predict brain damage after disturbance to the venous circulation: cortical vein occlusion model by photochemical dye. Neurosurgery. 1995 Aug;37(2):280–286. doi: 10.1227/00006123-199508000-00013. [DOI] [PubMed] [Google Scholar]
  8. Nakase H., Kempski O. S., Heimann A., Takeshima T., Tintera J. Microcirculation after cerebral venous occlusions as assessed by laser Doppler scanning. J Neurosurg. 1997 Aug;87(2):307–314. doi: 10.3171/jns.1997.87.2.0307. [DOI] [PubMed] [Google Scholar]
  9. Nakayama H., Dietrich W. D., Watson B. D., Busto R., Ginsberg M. D. Photothrombotic occlusion of rat middle cerebral artery: histopathological and hemodynamic sequelae of acute recanalization. J Cereb Blood Flow Metab. 1988 Jun;8(3):357–366. doi: 10.1038/jcbfm.1988.71. [DOI] [PubMed] [Google Scholar]
  10. Prado R., Dietrich W. D., Watson B. D., Ginsberg M. D., Green B. A. Photochemically induced graded spinal cord infarction. Behavioral, electrophysiological, and morphological correlates. J Neurosurg. 1987 Nov;67(5):745–753. doi: 10.3171/jns.1987.67.5.0745. [DOI] [PubMed] [Google Scholar]
  11. Sakaki T., Kakizaki T., Takeshima T., Miyamoto K., Tsujimoto S. Importance of prevention of intravenous thrombosis and preservation of the venous collateral flow in bridging vein injury during surgery: an experimental study. Surg Neurol. 1995 Aug;44(2):158–162. doi: 10.1016/0090-3019(95)00160-3. [DOI] [PubMed] [Google Scholar]
  12. Ungersböck K., Heimann A., Kempski O. Cerebral blood flow alterations in a rat model of cerebral sinus thrombosis. Stroke. 1993 Apr;24(4):563–570. doi: 10.1161/01.str.24.4.563. [DOI] [PubMed] [Google Scholar]

Articles from Skull base surgery are provided here courtesy of Thieme Medical Publishers

RESOURCES