Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1971 Aug;42(4):497–504. doi: 10.1111/j.1476-5381.1971.tb07135.x

Importance of the sympathetic nervous system in the development of renal hypertension in the rat

R S Grewal, C L Kaul
PMCID: PMC1665745  PMID: 5116034

Abstract

1. Chemical sympathectomy with 6-hydroxydopamine (6-OHDA) prevented the development of renal hypertension in 80% of weanling male rats of the C.F. strain.

2. Adult male rats treated with 6-OHDA developed hypertension on bilateral clamping of the renal arteries.

3. Demedullation of the adrenal glands followed by 6-OHDA treatment in adult rats prevented the development of hypertension in 75% of them.

4. Weanling rats treated with 6-OHDA did not have any measurable catecholamines in their hearts up to 72-78 days after treatment.

5. Unlike the weanling rats, the hearts of adult rats (demedullated or with intact medulla) showed significant refilling (40-50%) of catecholamine stores 60 days after 6-OHDA treatment.

6. It is concluded that the functional sympathetic nervous system is important in the development of renal hypertension in the rat.

Full text

PDF
497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayitey-Smith E., Varma D. R. An assessment of the role of the sympathetic nervous system in experimental hypertension using normal and immunosympathectomized rats. Br J Pharmacol. 1970 Oct;40(2):175–185. doi: 10.1111/j.1476-5381.1970.tb09911.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERTLER A., CARLSSON A., ROSENGREN E. A method for the fluorimetric determination of adrenaline and noradrenaline in tissues. Acta Physiol Scand. 1958 Dec 15;44(3-4):273–292. doi: 10.1111/j.1748-1716.1958.tb01627.x. [DOI] [PubMed] [Google Scholar]
  3. Byrom F. B., Wilson C. A plethysmographic method for measuring systolic blood pressure in the intact rat. J Physiol. 1938 Aug 15;93(3):301–304. doi: 10.1113/jphysiol.1938.sp003641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CROUT J. R., CREVELING C. R., UDENFRIEND S. Norepinephrine metabolism in rat brain and heart. J Pharmacol Exp Ther. 1961 Jun;132:269–277. [PubMed] [Google Scholar]
  5. Dorr L. D., Brody M. J. Preliminary observations on the role of the sympathetic nervous system in development and maintenance of experimental renal hypertension. Proc Soc Exp Biol Med. 1966 Oct;123(1):155–158. doi: 10.3181/00379727-123-31429. [DOI] [PubMed] [Google Scholar]
  6. Finch L., Leach G. D. The contribution of the sympathetic nervous system to the development and maintenance of experimental hypertension in the rat. Br J Pharmacol. 1970 Jun;39(2):317–324. doi: 10.1111/j.1476-5381.1970.tb12895.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finch L., Leach G. F. Does the adrenal medulla contribute to the maintenance of experimental hypertension? Eur J Pharmacol. 1970;11(3):388–391. doi: 10.1016/0014-2999(70)90016-6. [DOI] [PubMed] [Google Scholar]
  8. Grewal R. S., Kaul C. L. Mechanism of the antagonism of the hypotensive action of guanethidine by propranolol. Br J Pharmacol. 1970 Apr;38(4):771–775. doi: 10.1111/j.1476-5381.1970.tb09886.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAMBERGER B., LEVI-MONTALCINI R., NORBERG K. A., SJOEQVIST F. MONOAMINES IN IMMUNOSYMPATHECTOMIZED RATS. Int J Neuropharmacol. 1965 Apr;4:91–95. doi: 10.1016/0028-3908(65)90032-8. [DOI] [PubMed] [Google Scholar]
  10. Henning M. Noradrenaline turnover in renal hypertensive rats. J Pharm Pharmacol. 1969 Jan;21(1):61–63. doi: 10.1111/j.2042-7158.1969.tb08136.x. [DOI] [PubMed] [Google Scholar]
  11. KOLETSKY S., PRITCHARD W. H. VASOPRESSOR MATERIAL IN EXPERIMENTAL RENAL HYPERTENSION. Circ Res. 1963 Dec;13:552–556. doi: 10.1161/01.res.13.6.552. [DOI] [PubMed] [Google Scholar]
  12. LAVERTY R., SMIRK F. H. Observations on the pathogenesis of spontaneous inherited hypertension and constricted renalartery hypertension in rats. Circ Res. 1961 Mar;9:455–464. doi: 10.1161/01.res.9.2.455. [DOI] [PubMed] [Google Scholar]
  13. Louis W. J., Spector S., Tabei R., Sjoerdsma A. Synthesis and turnover of norepinephrine in the heart of the spontaneously hypertensive rat. Circ Res. 1969 Jan;24(1):85–91. doi: 10.1161/01.res.24.1.85. [DOI] [PubMed] [Google Scholar]
  14. Mueller R. A., Thoenen H., Axelrod J. Adrenal tyrosine hydroxylase: compensatory increase in activity after chemical sympathectomy. Science. 1969 Jan 31;163(3866):468–469. doi: 10.1126/science.163.3866.468. [DOI] [PubMed] [Google Scholar]
  15. PRITCHARD W. H., ORMOND A. P., Jr, KOLETSKY S. DIFFERENCES IN LEVELS OF CIRCULATING VASOPRESSOR MATERIALS IN DOGS WITH ACUTE AND CHRONIC RENAL HYPERTENSION. Proc Soc Exp Biol Med. 1964 Oct;117:127–131. doi: 10.3181/00379727-117-29514. [DOI] [PubMed] [Google Scholar]
  16. TAQUINI A. C., Jr Neurogenic control of peripheral resistance in renal hypertension. Circ Res. 1963 May;12(5):562–572. doi: 10.1161/01.res.12.5.562. [DOI] [PubMed] [Google Scholar]
  17. Thoenen H., Tranzer J. P. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-Hydroxydopamine. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968;261(3):271–288. doi: 10.1007/BF00536990. [DOI] [PubMed] [Google Scholar]
  18. Willard P. W., Fuller R. W. Functional significance of the sympathetic nervous system in production of hypertension. Nature. 1969 Jul 26;223(5204):417–418. doi: 10.1038/223417a0. [DOI] [PubMed] [Google Scholar]
  19. de Champlain J., Krakoff L. R., Axelrod J. A reduction in the accumulation of H3-norepinephrine in experimental hypertension. Life Sci. 1966 Dec;5(24):2283–2291. doi: 10.1016/0024-3205(66)90064-6. [DOI] [PubMed] [Google Scholar]
  20. de Champlain J., Krakoff L. R., Axelrod J. Catecholamine metabolism in experimental hypertension in the rat. Circ Res. 1967 Jan;20(1):136–145. doi: 10.1161/01.res.20.1.136. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES