Abstract
1. The effects of a single dose of 6-hydroxydopamine (6-OHDA) compared with those of chronic reserpine treatment were studied in lamb sympathetic neurones and adrenal medulla by a combination of fluorescence histochemistry, electron microscopy and radiochemical assay.
2. In sympathetic ganglia, 6-OHDA produced a rise in noradrenaline concentration within 24 h, and falls in tyrosine hydroxylase and monoamine oxidase activities, whereas reserpine caused a fall in noradrenaline, a rise in tyrosine hydroxylase activity and no change in monoamine oxidase activity. The fluorescence of intra- and postganglionic axons increased greatly within 24 h of 6-OHDA, and there was a corresponding accumulation of large dense-core vesicles within many axons whose neurotubules were disrupted. The changes were almost reversed after 3 weeks.
3. In the vas deferens, the concentration of noradrenaline and tyrosine hydroxylase and monoamine oxidase activities had all fallen 24 h after 6-OHDA treatment and had started to recover 3 weeks later. In the adrenal medulla, 6-OHDA did not alter NA concentrations but increased tyrosine hydroxylase activity whereas reserpine depleted noradrenaline and increased tyrosine hydroxylase activity.
4. The changes produced in sympathetic ganglia by 6-OHDA may be due both to a direct action on the axoplasmic transport of noradrenaline containing vesicles and indirectly to the reaction of the neurones to loss of the integrity of their axons.
Full text
PDF














Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angeletti P. U., Levi-Montalcini R. Sympathetic nerve cell destruction in newborn mammals by 6-hydroxydopamine. Proc Natl Acad Sci U S A. 1970 Jan;65(1):114–121. doi: 10.1073/pnas.65.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banks P., Mangnall D., Mayor D. The re-distribution of cytochrome oxidase, noradrenaline and adenosine triphosphate in adrenergic nerves constricted at two points. J Physiol. 1969 Feb;200(3):745–762. doi: 10.1113/jphysiol.1969.sp008720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahlström A., Jonason J., Norberg K. A. Monoamine oxidase activity in rat sciatic nerves after constriction. Eur J Pharmacol. 1969;6(3):248–254. doi: 10.1016/0014-2999(69)90182-4. [DOI] [PubMed] [Google Scholar]
- Elfvin L. G. Effects of reserpine on the surface structure of chromaffin cells in the rat adrenal medulla. J Ultrastruct Res. 1967 Dec;21(5):459–473. doi: 10.1016/s0022-5320(67)80152-7. [DOI] [PubMed] [Google Scholar]
- Geffen L. B., Livett B. G. Synaptic vesicles in sympathetic neurons. Physiol Rev. 1971 Jan;51(1):98–157. doi: 10.1152/physrev.1971.51.1.98. [DOI] [PubMed] [Google Scholar]
- Geffen L. B., Ostberg A. Distribution of granular vesicles in normal and constricted sympathetic neurones. J Physiol. 1969 Oct;204(3):583–592. doi: 10.1113/jphysiol.1969.sp008933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iversen L. L., De Champlain J., Glowinski J., Axelrod J. Uptake, storage and metabolism of norepinephrine in tissues of the developing rat. J Pharmacol Exp Ther. 1967 Sep;157(3):509–516. [PubMed] [Google Scholar]
- Iversen L. L., Jarrott B. Modification of an enzyme radiochemical assay procedure for noradrenaline. Biochem Pharmacol. 1970 May;19(5):1841–1843. doi: 10.1016/0006-2952(70)90182-6. [DOI] [PubMed] [Google Scholar]
- Jarrott B., Iversen L. L. Noradrenaline metabolizing enzymes in normal and sympathetically denervated vas deferens. J Neurochem. 1971 Jan;18(1):1–6. doi: 10.1111/j.1471-4159.1971.tb00161.x. [DOI] [PubMed] [Google Scholar]
- Jarrott B. Occurrence and properties of monoamine oxidase in adrenergic neurons. J Neurochem. 1971 Jan;18(1):7–16. doi: 10.1111/j.1471-4159.1971.tb00162.x. [DOI] [PubMed] [Google Scholar]
- Jonsson G., Sachs C. Effects of 6-hydroxydopamine on the uptake and storage of noradrenaline in sympathetic adrenergic neurons. Eur J Pharmacol. 1970 Feb;9(2):141–155. doi: 10.1016/0014-2999(70)90293-1. [DOI] [PubMed] [Google Scholar]
- KIRPEKAR S. M., CERVONI P. EFFECT OF COCAINE, PHENOXYBENZAMINE AND PHENTOLAMINE ON THE CATECHOLAMINE OUTPUT FROM SPLEEN AND ADRENAL MEDULLA. J Pharmacol Exp Ther. 1963 Oct;142:59–70. [PubMed] [Google Scholar]
- KIRSHNER N. Uptake of catecholamines by a particulate fraction of the adrenal medulla. J Biol Chem. 1962 Jul;237:2311–2317. [PubMed] [Google Scholar]
- LAVERTY R., SHARMAN D. F., VOGT M. ACTION OF 2, 4, 5-TRIHYDROXYPHENYLETHYLAMINE ON THE STORAGE AND RELEASE OF NORADRENALINE. Br J Pharmacol Chemother. 1965 Apr;24:549–560. doi: 10.1111/j.1476-5381.1965.tb01745.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malmfors T., Sachs C. Degeneration of adrenergic nerves produced by 6-hydroxydopamine. Eur J Pharmacol. 1968 Apr;3(1):89–92. doi: 10.1016/0014-2999(68)90056-3. [DOI] [PubMed] [Google Scholar]
- Mayor D., Kapeller K. Fluorescence microscopy and electron microscopy of adrenergic nerves after constriction at two points. J R Microsc Soc. 1967;87(2):277–294. [PubMed] [Google Scholar]
- Mueller R. A., Thoenen H., Axelrod J. Adrenal tyrosine hydroxylase: compensatory increase in activity after chemical sympathectomy. Science. 1969 Jan 31;163(3866):468–469. doi: 10.1126/science.163.3866.468. [DOI] [PubMed] [Google Scholar]
- Mueller R. A., Thoenen H., Axelrod J. Increase in tyrosine hydroxylase activity after reserpine administration. J Pharmacol Exp Ther. 1969 Sep;169(1):74–79. [PubMed] [Google Scholar]
- PORTER C. C., TOTARO J. A., STONE C. A. Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice. J Pharmacol Exp Ther. 1963 Jun;140:308–316. [PubMed] [Google Scholar]
- Thoenen H., Tranzer J. P. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-Hydroxydopamine. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968;261(3):271–288. doi: 10.1007/BF00536990. [DOI] [PubMed] [Google Scholar]
- Van Orden L. S., 3rd, Bensch K. G., Giarman N. J. Histochemical and functional relationships of catecholamines in adrenergic nerve endings. II. Extravesicular norepinephrine. J Pharmacol Exp Ther. 1967 Mar;155(3):428–439. [PubMed] [Google Scholar]
- Van Orden L. S., 3rd, Burke J. P., Geyer M., Lodoen F. V. Localization of depletion-sensitive and depletion-resistant norepinephrine storage sites in autonomic ganglia. J Pharmacol Exp Ther. 1970 Jul;174(1):56–71. [PubMed] [Google Scholar]
- Van Orden L. S., 3rd, Schaefer J. M., Burke J. P., Lodoen F. V. Differentiation of norepinephrine storage compartments in peripheral adrenergic nerves. J Pharmacol Exp Ther. 1970 Sep;174(3):357–368. [PubMed] [Google Scholar]
- von EULER U., LISHAJKO F. Improved technique for the fluorimetric estimation of catecholamines. Acta Physiol Scand. 1961 Apr;51:348–355. doi: 10.1111/j.1748-1716.1961.tb02128.x. [DOI] [PubMed] [Google Scholar]





