Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1971 Nov;43(3):504–513. doi: 10.1111/j.1476-5381.1971.tb07181.x

Effect of receptor blocking drugs on the depletion of brain glycogen by amphetamine

D A Hutchins, K J Rogers
PMCID: PMC1665784  PMID: 4400527

Abstract

1. Amphetamine sulphate (5 mg/kg), administered intraperitoneally, reduces the concentration of glycogen in the mouse brain by 25-30% after 30 minutes.

2. The effect of several receptor blocking drugs on the amphetamine-induced cerebral glycogenolysis was studied.

3. DL-Propranolol (0·25 mg/kg) and pronethalol (10 mg/kg) antagonized the depletion of brain glycogen by amphetamine.

4. Phentolamine, methysergide, atropine and mepyramine failed to antagonize the amphetamine-induced glycogenolysis.

5. D-Propranolol, chlorpromazine and phenoxybenzamine antagonized the glycogenolytic effect of amphetamine only when administered in sedative doses.

6. It is concluded that amphetamine-induced glycogenolysis in the mouse brain may be mediated through a β-adrenoceptor.

Full text

PDF
504

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adnitt P. I. Hepatic glycogen and blood glucose control. Biochem Pharmacol. 1969 Oct;18(10):2599–2604. doi: 10.1016/0006-2952(69)90190-7. [DOI] [PubMed] [Google Scholar]
  2. Antonis A., Clark M. L., Hodge R. L., Molony M., Pilkington T. R. Receptor mechanisms in the hyperglycaemic response to adrenaline in man. Lancet. 1967 May 27;1(7500):1135–1137. doi: 10.1016/s0140-6736(67)91710-2. [DOI] [PubMed] [Google Scholar]
  3. BREITNER C., PICCHIONI A., CHIN L. NEUROHORMONE LEVELS IN BRAIN AFTER CNS STIMULATION INCLUDING ELECTROTHERAPY. J Neuropsychiatr. 1964 Feb;5:153–158. [PubMed] [Google Scholar]
  4. BUTLER W. M., Jr, MORAN N. C. The pharmacological properties of chlorpromazine sulfoxide, a major metabolite of chlorpromazine; a comparison with chlorpromazine. J Pharmacol Exp Ther. 1956 Nov;118(3):328–337. [PubMed] [Google Scholar]
  5. Barrett A. M. A comparison of the effects of (plus of minus)-propranolol and (plus)-propranolol in anaesthetized dogs; beta-receptor blocking and haemodynamic action. J Pharm Pharmacol. 1969 Apr;21(4):241–247. doi: 10.1111/j.2042-7158.1969.tb08239.x. [DOI] [PubMed] [Google Scholar]
  6. CARLSSON A., LINDQVIST M. EFFECT OF CHLORPROMAZINE OR HALOPERIDOL ON FORMATION OF 3METHOXYTYRAMINE AND NORMETANEPHRINE IN MOUSE BRAIN. Acta Pharmacol Toxicol (Copenh) 1963;20:140–144. doi: 10.1111/j.1600-0773.1963.tb01730.x. [DOI] [PubMed] [Google Scholar]
  7. FLEMING W. W., KENNY A. D. THE EFFECT OF FASTING ON THE HYPERGLYCAEMIC RESPONSES TO CATECHOL AMINES IN RATS. Br J Pharmacol Chemother. 1964 Apr;22:267–274. doi: 10.1111/j.1476-5381.1964.tb02032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GLOWINSKI J., AXELROD J. EFFECT OF DRUGS ON THE UPTAKE, RELEASE, AND METABOLISM OF H3-NOREPINEPHRINE IN THE RAT BRAIN. J Pharmacol Exp Ther. 1965 Jul;149:43–49. [PubMed] [Google Scholar]
  9. HOLZBAUER M., VOGT M. The action of chlorpromazine on diencephalic sympathetic activity and on the release of adrenocorticotrophic hormone. Br J Pharmacol Chemother. 1954 Dec;9(4):402–407. doi: 10.1111/j.1476-5381.1954.tb00852.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Howe R., Shanks R. G. Optical isomers of propranolol. Nature. 1966 Jun 25;210(5043):1336–1338. doi: 10.1038/2101336a0. [DOI] [PubMed] [Google Scholar]
  11. Hutchins D. A., Rogers K. J. Physiological and drug-induced changes in the glycogen content of mouse brain. Br J Pharmacol. 1970 May;39(1):9–25. doi: 10.1111/j.1476-5381.1970.tb09551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ilyutchenok R. Y. The central mechanisms of phenothiazine compounds. Agressologie. 1968 Mar-Apr;9(2):365–371. [PubMed] [Google Scholar]
  13. LEBARON F. N. The resynthesis of glycogen by guinea pig cerebral-cortex slices. Biochem J. 1955 Sep;61(1):80–85. doi: 10.1042/bj0610080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MAYER S., MORAN N. C., FAIN J. The effect of adrenergic blocking agents on some metabolic actions of catecholamines. J Pharmacol Exp Ther. 1961 Oct;134:18–27. [PubMed] [Google Scholar]
  15. MAYNERT E. W., LEVI R. STRESS-INDUCED RELEASE OF BRAIN NOREPINEPHRINE AND ITS INHIBITION BY DRUGS. J Pharmacol Exp Ther. 1964 Jan;143:90–95. [PubMed] [Google Scholar]
  16. MURAD F., CHI Y. M., RALL T. W., SUTHERLAND E. W. Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3',5'-phosphate by preparations from cardiac muscle and liver. J Biol Chem. 1962 Apr;237:1233–1238. [PubMed] [Google Scholar]
  17. Nybäck H., Sedvall G. Effect of chlorpromazine on accumulation and disappearance of catecholamines formed from tyrosine-C14 in brain. J Pharmacol Exp Ther. 1968 Aug;162(2):294–301. [PubMed] [Google Scholar]
  18. SMITH C. B. EFFECTS OF D-AMPHETAMINE UPON BRAIN AMINE CONTENT AND LOCOMOTOR ACTIVITY OF MICE. J Pharmacol Exp Ther. 1965 Jan;147:96–102. [PubMed] [Google Scholar]
  19. Schildkraut J. J., Kety S. S. Biogenic amines and emotion. Science. 1967 Apr 7;156(3771):21–37. doi: 10.1126/science.156.3771.21. [DOI] [PubMed] [Google Scholar]
  20. Stone W. E. The effects of anaesthetics and of convulsants on the lactic acid content of the brain. Biochem J. 1938 Nov;32(11):1908–1918. doi: 10.1042/bj0321908. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES