Abstract
1. Amphetamine sulphate (5 mg/kg), administered intraperitoneally, reduces the concentration of glycogen in the mouse brain by 25-30% after 30 minutes.
2. The effect of several receptor blocking drugs on the amphetamine-induced cerebral glycogenolysis was studied.
3. DL-Propranolol (0·25 mg/kg) and pronethalol (10 mg/kg) antagonized the depletion of brain glycogen by amphetamine.
4. Phentolamine, methysergide, atropine and mepyramine failed to antagonize the amphetamine-induced glycogenolysis.
5. D-Propranolol, chlorpromazine and phenoxybenzamine antagonized the glycogenolytic effect of amphetamine only when administered in sedative doses.
6. It is concluded that amphetamine-induced glycogenolysis in the mouse brain may be mediated through a β-adrenoceptor.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adnitt P. I. Hepatic glycogen and blood glucose control. Biochem Pharmacol. 1969 Oct;18(10):2599–2604. doi: 10.1016/0006-2952(69)90190-7. [DOI] [PubMed] [Google Scholar]
- Antonis A., Clark M. L., Hodge R. L., Molony M., Pilkington T. R. Receptor mechanisms in the hyperglycaemic response to adrenaline in man. Lancet. 1967 May 27;1(7500):1135–1137. doi: 10.1016/s0140-6736(67)91710-2. [DOI] [PubMed] [Google Scholar]
- BREITNER C., PICCHIONI A., CHIN L. NEUROHORMONE LEVELS IN BRAIN AFTER CNS STIMULATION INCLUDING ELECTROTHERAPY. J Neuropsychiatr. 1964 Feb;5:153–158. [PubMed] [Google Scholar]
- BUTLER W. M., Jr, MORAN N. C. The pharmacological properties of chlorpromazine sulfoxide, a major metabolite of chlorpromazine; a comparison with chlorpromazine. J Pharmacol Exp Ther. 1956 Nov;118(3):328–337. [PubMed] [Google Scholar]
- Barrett A. M. A comparison of the effects of (plus of minus)-propranolol and (plus)-propranolol in anaesthetized dogs; beta-receptor blocking and haemodynamic action. J Pharm Pharmacol. 1969 Apr;21(4):241–247. doi: 10.1111/j.2042-7158.1969.tb08239.x. [DOI] [PubMed] [Google Scholar]
- CARLSSON A., LINDQVIST M. EFFECT OF CHLORPROMAZINE OR HALOPERIDOL ON FORMATION OF 3METHOXYTYRAMINE AND NORMETANEPHRINE IN MOUSE BRAIN. Acta Pharmacol Toxicol (Copenh) 1963;20:140–144. doi: 10.1111/j.1600-0773.1963.tb01730.x. [DOI] [PubMed] [Google Scholar]
- FLEMING W. W., KENNY A. D. THE EFFECT OF FASTING ON THE HYPERGLYCAEMIC RESPONSES TO CATECHOL AMINES IN RATS. Br J Pharmacol Chemother. 1964 Apr;22:267–274. doi: 10.1111/j.1476-5381.1964.tb02032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLOWINSKI J., AXELROD J. EFFECT OF DRUGS ON THE UPTAKE, RELEASE, AND METABOLISM OF H3-NOREPINEPHRINE IN THE RAT BRAIN. J Pharmacol Exp Ther. 1965 Jul;149:43–49. [PubMed] [Google Scholar]
- HOLZBAUER M., VOGT M. The action of chlorpromazine on diencephalic sympathetic activity and on the release of adrenocorticotrophic hormone. Br J Pharmacol Chemother. 1954 Dec;9(4):402–407. doi: 10.1111/j.1476-5381.1954.tb00852.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howe R., Shanks R. G. Optical isomers of propranolol. Nature. 1966 Jun 25;210(5043):1336–1338. doi: 10.1038/2101336a0. [DOI] [PubMed] [Google Scholar]
- Hutchins D. A., Rogers K. J. Physiological and drug-induced changes in the glycogen content of mouse brain. Br J Pharmacol. 1970 May;39(1):9–25. doi: 10.1111/j.1476-5381.1970.tb09551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ilyutchenok R. Y. The central mechanisms of phenothiazine compounds. Agressologie. 1968 Mar-Apr;9(2):365–371. [PubMed] [Google Scholar]
- LEBARON F. N. The resynthesis of glycogen by guinea pig cerebral-cortex slices. Biochem J. 1955 Sep;61(1):80–85. doi: 10.1042/bj0610080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAYER S., MORAN N. C., FAIN J. The effect of adrenergic blocking agents on some metabolic actions of catecholamines. J Pharmacol Exp Ther. 1961 Oct;134:18–27. [PubMed] [Google Scholar]
- MAYNERT E. W., LEVI R. STRESS-INDUCED RELEASE OF BRAIN NOREPINEPHRINE AND ITS INHIBITION BY DRUGS. J Pharmacol Exp Ther. 1964 Jan;143:90–95. [PubMed] [Google Scholar]
- MURAD F., CHI Y. M., RALL T. W., SUTHERLAND E. W. Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3',5'-phosphate by preparations from cardiac muscle and liver. J Biol Chem. 1962 Apr;237:1233–1238. [PubMed] [Google Scholar]
- Nybäck H., Sedvall G. Effect of chlorpromazine on accumulation and disappearance of catecholamines formed from tyrosine-C14 in brain. J Pharmacol Exp Ther. 1968 Aug;162(2):294–301. [PubMed] [Google Scholar]
- SMITH C. B. EFFECTS OF D-AMPHETAMINE UPON BRAIN AMINE CONTENT AND LOCOMOTOR ACTIVITY OF MICE. J Pharmacol Exp Ther. 1965 Jan;147:96–102. [PubMed] [Google Scholar]
- Schildkraut J. J., Kety S. S. Biogenic amines and emotion. Science. 1967 Apr 7;156(3771):21–37. doi: 10.1126/science.156.3771.21. [DOI] [PubMed] [Google Scholar]
- Stone W. E. The effects of anaesthetics and of convulsants on the lactic acid content of the brain. Biochem J. 1938 Nov;32(11):1908–1918. doi: 10.1042/bj0321908. [DOI] [PMC free article] [PubMed] [Google Scholar]
