Abstract
1. Studies on the urine outflow, blood ADH concentration and electrolyte excretion were carried out in α-chloralose anaesthetized hydrated dogs; the agonists and antagonists of specific cholinoceptors and adrenoceptors were injected by the intracerebroventricular technique, to delineate the role of the C.N.S. receptors in the control of ADH secretion.
2. Central injection of acetylcholine elicited a dose-dependent antidiuretic response which was associated with an increase in the blood ADH titre. Central atropinization partially blocked the antidiuretic response. The remaining antidiuretic response was reversed to a diuretic one by further pretreatment with phenoxybenzamine. The diuretic response thus obtained could be blocked by propranolol.
3. The α-adrenoceptor agonists, phenylephrine and noradrenaline, induced dose-dependent antidiuretic responses with a concomitant rise in blood ADH concentration. Their effect could be blocked by pretreatment centrally with phenoxybenzamine. Low doses of adrenaline induced a diuretic response and a decrease in blood ADH concentration, higher doses elicited a dose-dependent antidiuretic response and increase in the titre of ADH in blood. Central phenoxybenzamine pretreatment reversed the antidiuretic effect of high doses of adrenaline to a diuretic effect which could be blocked by propranolol.
4. Isoprenaline elicited a dose-dependent diuretic response and a decrease in blood ADH titre and propranolol competitively blocked the effect of isoprenaline.
5. It is concluded that central muscarinic cholinoceptors and the α-adrenoceptors are concerned in the release of ADH, whereas the β-adrenoceptors are concerned with inhibition of ADH release.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABRAHAMS V. C., KOELLE G. B., SMART P. Histochemical demonstration of cholinesterases in the hypothalamus of the dog. J Physiol. 1957 Nov 14;139(1):137–144. doi: 10.1113/jphysiol.1957.sp005881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BHARGAVA K. P., TANGRI K. K. The central vasomotor effects of 5-hydroxytryptamie. Br J Pharmacol Chemother. 1959 Dec;14:411–414. doi: 10.1111/j.1476-5381.1959.tb00943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BISSET G. W., WALKER J. M. The effects of nicotine, hexamethonium and ethanol on the secretion of the antidiuretic and oxytocic hormones of the rat. Br J Pharmacol Chemother. 1957 Dec;12(4):461–467. doi: 10.1111/j.1476-5381.1957.tb00166.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARLSSON A., FALCK B., HILLARP N. A. Cellular localization of brain monoamines. Acta Physiol Scand Suppl. 1962;56(196):1–28. [PubMed] [Google Scholar]
- CARLSSON A. The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev. 1959 Jun;11(2 Pt 2):490–493. [PubMed] [Google Scholar]
- DEARBORN E. H., LASAGNA L. The antidiuretic action of epinephrine and norepinephrine. J Pharmacol Exp Ther. 1952 Sep;106(1):122–128. [PubMed] [Google Scholar]
- DICKER S. E. A method for the assay of very small amounts of antidiuretic activity with a note on the antidiuretic titre of rat's blood. J Physiol. 1953 Oct;122(1):149–157. doi: 10.1113/jphysiol.1953.sp004986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOUGLAS W. W., RUBIN R. P. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol. 1961 Nov;159:40–57. doi: 10.1113/jphysiol.1961.sp006791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUKE H. N., PICKFORD M. Observations on the action of acetylcholine and adrenaline on the hypothalamus. J Physiol. 1951 Jul;114(3):325–332. doi: 10.1113/jphysiol.1951.sp004624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ERANKO O., KARVONEN M. J. Adrenaline-antidiuresis in the water-loaded dog. Nature. 1952 Aug 23;170(4321):331–331. doi: 10.1038/170331a0. [DOI] [PubMed] [Google Scholar]
- FANG H. S., LIU H. M., WANG S. C. Liberation of antidiuretic hormone following hypothalamic stimulation in the dog. Am J Physiol. 1962 Feb;202:212–216. doi: 10.1152/ajplegacy.1962.202.2.212. [DOI] [PubMed] [Google Scholar]
- FELDBERG W. The role of acetylcholine in the central nervous system. Br Med Bull. 1950;6(4):312–321. doi: 10.1093/oxfordjournals.bmb.a073622. [DOI] [PubMed] [Google Scholar]
- FUXE K. EVIDENCE FOR THE EXISTENCE OF MONOAMINE NEURONS IN THE CENTRAL NERVOUS SYSTEM. 3. THE MONOAMINE NERVE TERMINAL. Z Zellforsch Mikrosk Anat. 1965 Feb 9;65:573–596. [PubMed] [Google Scholar]
- Feldberg W., Vogt M. Acetylcholine synthesis in different regions of the central nervous system. J Physiol. 1948 Jun 25;107(3):372–381. doi: 10.1113/jphysiol.1948.sp004282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOERANSSON G. THE METABOLISM OF FATTY ACIDS IN THE RAT. VI. ARACHIDONIC ACID. Acta Physiol Scand. 1965 May-Jun;64:1–5. doi: 10.1111/j.1748-1716.1965.tb04148.x. [DOI] [PubMed] [Google Scholar]
- KOELLE G. B., GEESEY C. N. Localization of acetylcholinesterase in the neurohypophysis and its functional implications. Proc Soc Exp Biol Med. 1961 Mar;106:625–628. doi: 10.3181/00379727-106-26423. [DOI] [PubMed] [Google Scholar]
- MILLS E., WANG S. C. LIBERATION OF ANTIDIURETIC HORMONE: PHARMACOLOGIC BLOCKADE OF ASCENDING PATHWAYS. Am J Physiol. 1964 Dec;207:1405–1410. doi: 10.1152/ajplegacy.1964.207.6.1405. [DOI] [PubMed] [Google Scholar]
- MOORE A. W., COCHRAN N. H., CANADA A. Alterations in renal hemodynamics and function during the intravenous injection of epinephrine in the dog. Am J Physiol. 1951 Sep;166(3):649–657. doi: 10.1152/ajplegacy.1951.166.3.649. [DOI] [PubMed] [Google Scholar]
- PICKFORD M., WATT J. A. A comparison of the effect of intravenous and intracarotid injections of acetylcholine in the dog. J Physiol. 1951 Jul;114(3):333–335. doi: 10.1113/jphysiol.1951.sp004625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philippu A., Heyd G., Burger A. Release of noradrenaline from the hypothalamus in vivo. Eur J Pharmacol. 1970 Jan;9(1):52–58. doi: 10.1016/0014-2999(70)90320-1. [DOI] [PubMed] [Google Scholar]
- Pickford M. The action of acetylcholine in the supraoptic nucleus of the chloralosed dog. J Physiol. 1947 Jul 31;106(3):264–270. doi: 10.1113/jphysiol.1947.sp004209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pickford M. The inhibitory effect of acetylcholine on water diuresis in the dog, and its pituitary transmission. J Physiol. 1939 Feb 14;95(1):226–238. doi: 10.1113/jphysiol.1939.sp003721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TWAROG B. M., PAGE I. H. Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol. 1953 Oct;175(1):157–161. doi: 10.1152/ajplegacy.1953.175.1.157. [DOI] [PubMed] [Google Scholar]
- VOGT M. The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiol. 1954 Mar 29;123(3):451–481. doi: 10.1113/jphysiol.1954.sp005064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEINSTEIN H., BERNE R. M., SACHS H. Vasopressin in blood: effect of hemorrhage. Endocrinology. 1960 May;66:712–718. doi: 10.1210/endo-66-5-712. [DOI] [PubMed] [Google Scholar]
- YOSHIDA S., MOTOHASHI K., IBAYASHI H., OKINAKA S. METHOD FOR THE ASSAY OF ANTIDIURETIC HORMONE IN PLASMA WITH A NOTE ON THE ANTIDIURETIC TITER OF HUMAN PLASMA. J Lab Clin Med. 1963 Aug;62:279–285. [PubMed] [Google Scholar]
