Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1972 Jul;45(3):490–503. doi: 10.1111/j.1476-5381.1972.tb08106.x

A comparison of the pharmacological and biochemical properties of substrate-selective monoamine oxidase inhibitors

A J Christmas, C J Coulson, D R Maxwell, D Riddell
PMCID: PMC1666166  PMID: 5072232

Abstract

1. M&B 9302, E-250, NSD 2023, and Lilly 51641, substrate-selective inhibitors of monoamine oxidase (MAO), and two non-selective inhibitors of MAO (tranylcypromine and phenelzine) have been compared in the rat for activity in (i) inhibiting rat brain monoamine oxidase in vitro and in vivo using tyramine, 5-hydroxytryptamine (5-HT) and benzylamine as substrates; (ii) increasing brain levels of noradrenaline (NA) and 5-HT and (iii) antagonizing tetrabenazine-induced sedation.

2. Concentrations of M&B 9302 and Lilly 51641 required to produce 50% inhibition of 5-HT oxidation by brain mitochondrial MAO were 1·4 × 10-8M and 2·5 × 10-7M respectively. Higher concentrations were required to inhibit tyramine oxidation whilst benzylamine oxidation was inhibited only at concentrations above 10-5M.

3. E-250 showed the reverse substrate-selectivity in inhibiting the oxidation of benzylamine at concentrations below that required to inhibit the oxidation of 5-HT. NSD 2023 showed little substrate selectivity in vitro.

4. Qualitatively similar results were obtained in vivo, except that NSD 2023 showed more marked substrate-selectivity.

5. All the inhibitors except E-250 produced a dose-related rise in brain 5-HT levels. Only phenelzine and Lilly 51641 showed a linear relationship between NA levels and dose.

6. All the drugs antagonized, in dose-related fashion, the effects of tetrabenazine in reducing locomotor activity. E-250 and NSD 2023 failed to restore locomotor activity to control levels whilst in high doses the other inhibitors, when given before tetrabenazine, produced a considerable increase in locomotor activity.

7. Antagonism of tetrabenazine sedation appears to be correlated with (a) inhibition of the enzyme species that oxidize 5-HT and NA but not with inhibition of the enzyme species that oxidize benzylamine; (b) the rise in brain 5-HT levels rather than NA levels.

Full text

PDF
490

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butcher L. L., Andén N. E. Effects of apomorphine and amphetamine on schedule-controlled behavior: reversal of tetrabenazine suppression and dopaminergic correlates. Eur J Pharmacol. 1969;6(3):255–264. doi: 10.1016/0014-2999(69)90183-6. [DOI] [PubMed] [Google Scholar]
  2. Butcher L. L., Butcher S. G., Larsson K. Effects of apomorphine, (+)-amphetamine, and nialamide on tetrabenazine-induced suppression of sexual behavior in the male rat. Eur J Pharmacol. 1969 Sep;7(3):283–288. doi: 10.1016/0014-2999(69)90093-4. [DOI] [PubMed] [Google Scholar]
  3. Chan O. L., Webster R. A. Importance of noradrenaline found in a functional pool in maintaining spontaneous locomotor activity in rats. Br J Pharmacol. 1971 Apr;41(4):700–708. doi: 10.1111/j.1476-5381.1971.tb07078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christmas A. J., Hall D. W., Hayward A., Maxwell D. R. Relationship between the pharmacological and biochemical properties of a monoamine oxidase inhibitor preferentially affecting 5-hydroxytryptamine oxidation. Br J Pharmacol. 1970 May;39(1):207P–208P. [PMC free article] [PubMed] [Google Scholar]
  5. Curzon G., Green A. R. Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain. Br J Pharmacol. 1970 Jul;39(3):653–655. doi: 10.1111/j.1476-5381.1970.tb10373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuller R. W. Kinetic studies and effects in vivo of a new monoamine oxidase inhibitor, N-[2-(o-chlorophenoxy)-ethyl]-cyclopropylamine. Biochem Pharmacol. 1968 Oct;17(10):2097–2106. doi: 10.1016/0006-2952(68)90184-6. [DOI] [PubMed] [Google Scholar]
  7. Goridis C., Neff N. H. Evidence for a specific monoamine oxidase associated with sympathetic nerves. Neuropharmacology. 1971 Sep;10(5):557–564. doi: 10.1016/0028-3908(71)90021-9. [DOI] [PubMed] [Google Scholar]
  8. Grahame-Smith D. G. Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. J Neurochem. 1971 Jun;18(6):1053–1066. doi: 10.1111/j.1471-4159.1971.tb12034.x. [DOI] [PubMed] [Google Scholar]
  9. Hall D. W., Logan B. W., Parsons G. H. Further studies on the inhibition of monoamine oxidase by M and B 9302 (clorgyline). I. Substrate specificity in various mammalian species. Biochem Pharmacol. 1969 Jun;18(6):1447–1454. doi: 10.1016/0006-2952(69)90258-5. [DOI] [PubMed] [Google Scholar]
  10. Izumi F., Oka M., Yoshida H., Imaizumi R. Stimulatory effect of reserpine on monoamine oxidase in guinea pig heart. Biochem Pharmacol. 1969 Jul;18(7):1739–1748. doi: 10.1016/0006-2952(69)90163-4. [DOI] [PubMed] [Google Scholar]
  11. Jarrott B. Occurrence and properties of monoamine oxidase in adrenergic neurons. J Neurochem. 1971 Jan;18(1):7–16. doi: 10.1111/j.1471-4159.1971.tb00162.x. [DOI] [PubMed] [Google Scholar]
  12. Johnston J. P. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol. 1968 Jul;17(7):1285–1297. doi: 10.1016/0006-2952(68)90066-x. [DOI] [PubMed] [Google Scholar]
  13. Knoll J., Ecseri Z., Kelemen K., Nievel J., Knoll B. Phenylisopropylmethylpropinylamine (E-250), a new spectrum psychic energizer. Arch Int Pharmacodyn Ther. 1965 May;155(1):154–164. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laverty R., Taylor K. M. The fluorometric assay of catecholamines and related compounds: improvements and extensions to the hydroxyindole technique. Anal Biochem. 1968 Feb;22(2):269–279. doi: 10.1016/0003-2697(68)90316-3. [DOI] [PubMed] [Google Scholar]
  16. Maickel R. P., Cox R. H., Jr, Saillant J., Miller F. P. A method for the determination of serotonin and norepinephrine in discrete areas of rat brain. Int J Neuropharmacol. 1968 May;7(3):275–281. doi: 10.1016/0028-3908(68)90034-8. [DOI] [PubMed] [Google Scholar]
  17. QUINN G. P., SHORE P. A., BRODIE B. B. Biochemical and pharmacological studies of RO 1-9569 (tetrabenazine), a nonindole tranquilizing agent with reserpine-like effects. J Pharmacol Exp Ther. 1959 Oct;127:103–109. [PubMed] [Google Scholar]
  18. Shih J. H., Eiduson S. Multiple forms of monoamine oxidase in developing brain: tissue and substrate specificities. J Neurochem. 1971 Jul;18(7):1221–1227. doi: 10.1111/j.1471-4159.1971.tb00221.x. [DOI] [PubMed] [Google Scholar]
  19. Squires R. F., Lassen J. B. Some pharmacological and biochemical properties of gamma-morpholino-butyrophenone (NSD 2023), a new monoamine oxidase inhibitor. Biochem Pharmacol. 1968 Mar;17(3):369–384. doi: 10.1016/0006-2952(68)90247-5. [DOI] [PubMed] [Google Scholar]
  20. WEISSBACH H., SMITH T. E., DALY J. W., WITKOP B., UDENFRIEND S. A rapid spectrophotometric assay of mono-amine oxidase based on the rate of disappearance of kynuramine. J Biol Chem. 1960 Apr;235:1160–1163. [PubMed] [Google Scholar]
  21. Youdim M. B., Collins G. G., Sandler M. Multiple forms of rat brain monoamine oxidase. Nature. 1969 Aug 9;223(5206):626–628. doi: 10.1038/223626a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES