Abstract
1. M&B 9302, E-250, NSD 2023, and Lilly 51641, substrate-selective inhibitors of monoamine oxidase (MAO), and two non-selective inhibitors of MAO (tranylcypromine and phenelzine) have been compared in the rat for activity in (i) inhibiting rat brain monoamine oxidase in vitro and in vivo using tyramine, 5-hydroxytryptamine (5-HT) and benzylamine as substrates; (ii) increasing brain levels of noradrenaline (NA) and 5-HT and (iii) antagonizing tetrabenazine-induced sedation.
2. Concentrations of M&B 9302 and Lilly 51641 required to produce 50% inhibition of 5-HT oxidation by brain mitochondrial MAO were 1·4 × 10-8M and 2·5 × 10-7M respectively. Higher concentrations were required to inhibit tyramine oxidation whilst benzylamine oxidation was inhibited only at concentrations above 10-5M.
3. E-250 showed the reverse substrate-selectivity in inhibiting the oxidation of benzylamine at concentrations below that required to inhibit the oxidation of 5-HT. NSD 2023 showed little substrate selectivity in vitro.
4. Qualitatively similar results were obtained in vivo, except that NSD 2023 showed more marked substrate-selectivity.
5. All the inhibitors except E-250 produced a dose-related rise in brain 5-HT levels. Only phenelzine and Lilly 51641 showed a linear relationship between NA levels and dose.
6. All the drugs antagonized, in dose-related fashion, the effects of tetrabenazine in reducing locomotor activity. E-250 and NSD 2023 failed to restore locomotor activity to control levels whilst in high doses the other inhibitors, when given before tetrabenazine, produced a considerable increase in locomotor activity.
7. Antagonism of tetrabenazine sedation appears to be correlated with (a) inhibition of the enzyme species that oxidize 5-HT and NA but not with inhibition of the enzyme species that oxidize benzylamine; (b) the rise in brain 5-HT levels rather than NA levels.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Butcher L. L., Andén N. E. Effects of apomorphine and amphetamine on schedule-controlled behavior: reversal of tetrabenazine suppression and dopaminergic correlates. Eur J Pharmacol. 1969;6(3):255–264. doi: 10.1016/0014-2999(69)90183-6. [DOI] [PubMed] [Google Scholar]
- Butcher L. L., Butcher S. G., Larsson K. Effects of apomorphine, (+)-amphetamine, and nialamide on tetrabenazine-induced suppression of sexual behavior in the male rat. Eur J Pharmacol. 1969 Sep;7(3):283–288. doi: 10.1016/0014-2999(69)90093-4. [DOI] [PubMed] [Google Scholar]
- Chan O. L., Webster R. A. Importance of noradrenaline found in a functional pool in maintaining spontaneous locomotor activity in rats. Br J Pharmacol. 1971 Apr;41(4):700–708. doi: 10.1111/j.1476-5381.1971.tb07078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christmas A. J., Hall D. W., Hayward A., Maxwell D. R. Relationship between the pharmacological and biochemical properties of a monoamine oxidase inhibitor preferentially affecting 5-hydroxytryptamine oxidation. Br J Pharmacol. 1970 May;39(1):207P–208P. [PMC free article] [PubMed] [Google Scholar]
- Curzon G., Green A. R. Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain. Br J Pharmacol. 1970 Jul;39(3):653–655. doi: 10.1111/j.1476-5381.1970.tb10373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller R. W. Kinetic studies and effects in vivo of a new monoamine oxidase inhibitor, N-[2-(o-chlorophenoxy)-ethyl]-cyclopropylamine. Biochem Pharmacol. 1968 Oct;17(10):2097–2106. doi: 10.1016/0006-2952(68)90184-6. [DOI] [PubMed] [Google Scholar]
- Goridis C., Neff N. H. Evidence for a specific monoamine oxidase associated with sympathetic nerves. Neuropharmacology. 1971 Sep;10(5):557–564. doi: 10.1016/0028-3908(71)90021-9. [DOI] [PubMed] [Google Scholar]
- Grahame-Smith D. G. Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. J Neurochem. 1971 Jun;18(6):1053–1066. doi: 10.1111/j.1471-4159.1971.tb12034.x. [DOI] [PubMed] [Google Scholar]
- Hall D. W., Logan B. W., Parsons G. H. Further studies on the inhibition of monoamine oxidase by M and B 9302 (clorgyline). I. Substrate specificity in various mammalian species. Biochem Pharmacol. 1969 Jun;18(6):1447–1454. doi: 10.1016/0006-2952(69)90258-5. [DOI] [PubMed] [Google Scholar]
- Izumi F., Oka M., Yoshida H., Imaizumi R. Stimulatory effect of reserpine on monoamine oxidase in guinea pig heart. Biochem Pharmacol. 1969 Jul;18(7):1739–1748. doi: 10.1016/0006-2952(69)90163-4. [DOI] [PubMed] [Google Scholar]
- Jarrott B. Occurrence and properties of monoamine oxidase in adrenergic neurons. J Neurochem. 1971 Jan;18(1):7–16. doi: 10.1111/j.1471-4159.1971.tb00162.x. [DOI] [PubMed] [Google Scholar]
- Johnston J. P. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol. 1968 Jul;17(7):1285–1297. doi: 10.1016/0006-2952(68)90066-x. [DOI] [PubMed] [Google Scholar]
- Knoll J., Ecseri Z., Kelemen K., Nievel J., Knoll B. Phenylisopropylmethylpropinylamine (E-250), a new spectrum psychic energizer. Arch Int Pharmacodyn Ther. 1965 May;155(1):154–164. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laverty R., Taylor K. M. The fluorometric assay of catecholamines and related compounds: improvements and extensions to the hydroxyindole technique. Anal Biochem. 1968 Feb;22(2):269–279. doi: 10.1016/0003-2697(68)90316-3. [DOI] [PubMed] [Google Scholar]
- Maickel R. P., Cox R. H., Jr, Saillant J., Miller F. P. A method for the determination of serotonin and norepinephrine in discrete areas of rat brain. Int J Neuropharmacol. 1968 May;7(3):275–281. doi: 10.1016/0028-3908(68)90034-8. [DOI] [PubMed] [Google Scholar]
- QUINN G. P., SHORE P. A., BRODIE B. B. Biochemical and pharmacological studies of RO 1-9569 (tetrabenazine), a nonindole tranquilizing agent with reserpine-like effects. J Pharmacol Exp Ther. 1959 Oct;127:103–109. [PubMed] [Google Scholar]
- Shih J. H., Eiduson S. Multiple forms of monoamine oxidase in developing brain: tissue and substrate specificities. J Neurochem. 1971 Jul;18(7):1221–1227. doi: 10.1111/j.1471-4159.1971.tb00221.x. [DOI] [PubMed] [Google Scholar]
- Squires R. F., Lassen J. B. Some pharmacological and biochemical properties of gamma-morpholino-butyrophenone (NSD 2023), a new monoamine oxidase inhibitor. Biochem Pharmacol. 1968 Mar;17(3):369–384. doi: 10.1016/0006-2952(68)90247-5. [DOI] [PubMed] [Google Scholar]
- WEISSBACH H., SMITH T. E., DALY J. W., WITKOP B., UDENFRIEND S. A rapid spectrophotometric assay of mono-amine oxidase based on the rate of disappearance of kynuramine. J Biol Chem. 1960 Apr;235:1160–1163. [PubMed] [Google Scholar]
- Youdim M. B., Collins G. G., Sandler M. Multiple forms of rat brain monoamine oxidase. Nature. 1969 Aug 9;223(5206):626–628. doi: 10.1038/223626a0. [DOI] [PubMed] [Google Scholar]
