Abstract
1 Aminophylline inhibits the coronary vasodilator actions of adenosine. Our previous studies suggested that low dose infusions of aminophylline reduce coronary blood flow in the isolated heart. In the present study we investigated the actions of aminophylline on coronary blood flow and myocardial contractility in a transplanted heart model. Drugs were given by close coronary arterial infusion. 2 Aminophylline in low doses (200 mug/min) reduced coronary blood flow by 21 plus or minus 2% (mean plus or minus s.e. mean) but did not alter myocardial contractility or heart rate. Higher doses (500 and 1000 mug/min) increased coronary blood flow and myocardial contractility without changing heart rate. 3 Alpha-adrenoceptor blockade with phenoxybenzamine did not affect the response to a low dose of aminophylline (200 mug/min). 4 Propranolol in doses of 10 and 30mug/min blocked beta-adrenoceptors but did not change coronary blood flow. The higher dose reduced myocardial contractility. 5 The effects of a high dose of aminophylline (1000 mug/min) on coronary blood flow were not changed by either alpha- or beta-adrenoceptor blockade, although propranolol (30 mug/min) reduced the augmentation in myocardial contractility. 6 The results show that when given in doses which do not alter myocardial contractility, aminophylline reduces coronary blood flow in the isolated heart and that this is not mediated through an alpha-adrenoceptor mechanism. They also show that the increases in coronary blood flow and positive inotropic effects obtained with higher doses of aminophylline are not mediated through catecholamines and suggest that higher doses of aminophylline have a small direct coronary vasodilator action. The low dose vasoconstrictor response may be produced by inhibition of the coronary vasodilator action of locally produced adenosine.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Afonso S. Inhibition of coronary vasodilating action of dipyridamole and adenosine by aminophylline in the dog. Circ Res. 1970 Jun;26(6):743–752. doi: 10.1161/01.res.26.6.743. [DOI] [PubMed] [Google Scholar]
- Afonso S., O'Brien G. S. Inhibition of cardiovascular metabolic and hemodynamic effects of adenosine by aminophylline. Am J Physiol. 1970 Dec;219(6):1672–1674. doi: 10.1152/ajplegacy.1970.219.6.1672. [DOI] [PubMed] [Google Scholar]
- BERNE R. M. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol. 1963 Feb;204:317–322. doi: 10.1152/ajplegacy.1963.204.2.317. [DOI] [PubMed] [Google Scholar]
- BUTCHER R. W., SUTHERLAND E. W. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. J Biol Chem. 1962 Apr;237:1244–1250. [PubMed] [Google Scholar]
- Bartelstone H. J., Nasmyth P. A., Telford J. M. The significance of adenosine cyclic 3',5'-monophosphate for the contraction of smooth muscle. J Physiol. 1967 Jan;188(2):159–176. doi: 10.1113/jphysiol.1967.sp008131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blinks J. R., Olson C. B., Jewell B. R., Bravený P. Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Evidence for a dual mechanism of action. Circ Res. 1972 Apr;30(4):367–392. doi: 10.1161/01.res.30.4.367. [DOI] [PubMed] [Google Scholar]
- Boake W. C., Folts J. D. The effect of beta-adrenergic blockade on coronary blood flow in the homografted canine heart. Arch Int Pharmacodyn Ther. 1971 Jul;192(1):96–104. [PubMed] [Google Scholar]
- Cohen Y., Lesne M., Valette G., Wepierre J. Etude du mécanisme de l'effet inotrope positif ezercé par les méthylxanthines sur le coeur isolé de rat. Arch Int Pharmacodyn Ther. 1970 Mar;184(1):186–194. [PubMed] [Google Scholar]
- Davis W. G., MacDonald D. C., Mason D. F. The effects of pronethalol and propranolol on the coronary circulation of the dog. Br J Pharmacol. 1969 Oct;37(2):338–356. doi: 10.1111/j.1476-5381.1969.tb10571.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein S. E., Levey G. S., Skelton C. L. Adenyl cyclase and cyclic AMP. Biochemical links in the regulation of myocardial contractility. Circulation. 1971 Mar;43(3):437–450. doi: 10.1161/01.cir.43.3.437. [DOI] [PubMed] [Google Scholar]
- Gersh B. J., Hahn C. E., Prys-Roberts C. Physical criteria for measurement of left ventricular pressure and its first derivative. Cardiovasc Res. 1971 Jan;5(1):32–40. doi: 10.1093/cvr/5.1.32. [DOI] [PubMed] [Google Scholar]
- Graber J. D., Conti C. R., Lappe D. L., Ross R. S. Effect of pacing-induced tachycardia and myocardial ischemia on ventricular pressure-velocity relationships in man. Circulation. 1972 Jul;46(1):74–83. doi: 10.1161/01.cir.46.1.74. [DOI] [PubMed] [Google Scholar]
- Kalsner S. Mechanism of potentiation of contractor responses to catecholamines by methylxanthines in aortic strips. Br J Pharmacol. 1971 Oct;43(2):379–388. [PMC free article] [PubMed] [Google Scholar]
- MELVILLE K. I., LU F. C. Effect of epinephrine, aminophylline, nitroglycerine and papaverine on coronary inflow and on heart contraction, as recorded concurrently. J Pharmacol Exp Ther. 1950 Jul;99(3):286–303. [PubMed] [Google Scholar]
- Marcus M. L., Skelton C. L., Grauer L. E., Epstein S. E. Effects of theophylline on myocardial mechanics. Am J Physiol. 1972 Jun;222(6):1361–1365. doi: 10.1152/ajplegacy.1972.222.6.1361. [DOI] [PubMed] [Google Scholar]
- Massingham R., Nasmyth P. A. The nature of the positive inotropic response of the isolated frog heart to theophylline and to iminazole. Br J Pharmacol. 1972 Jun;45(2):229–239. doi: 10.1111/j.1476-5381.1972.tb08078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNeill J. H., Nassar M., Brody T. M. The effect of theophylline on amine-induced cardiac phosphorylase activation and cardiac contractility. J Pharmacol Exp Ther. 1969 Feb;165(2):234–241. [PubMed] [Google Scholar]
- NAYLER W. G. Effect of caffeine on cardiac contractile activity and radiocalcium movement. Am J Physiol. 1963 Jun;204:969–974. doi: 10.1152/ajplegacy.1963.204.6.969. [DOI] [PubMed] [Google Scholar]
- Nayler W. G. Calcium exchange in cardiac muscle: a basic mechanism of drug action. Am Heart J. 1967 Mar;73(3):379–394. doi: 10.1016/0002-8703(67)90435-8. [DOI] [PubMed] [Google Scholar]
- Nayler W. G., Hasker J. R. Effect of caffeine on calcium in subcellular fractions of cardiac muscle. Am J Physiol. 1966 Oct;211(4):950–954. doi: 10.1152/ajplegacy.1966.211.4.950. [DOI] [PubMed] [Google Scholar]
- Nejad N. S., Klein M. D., Mirsky I., Lown B. Assessment of myocardial contractility from ventricular pressure recordings. Cardiovasc Res. 1971 Jan;5(1):15–23. doi: 10.1093/cvr/5.1.15. [DOI] [PubMed] [Google Scholar]
- Paoloni H. J., Wilcken D. E. Inter-relations between the actions of dipyridamole, adenosine, aminophylline and propranolol on the coronary circulation of the transplanted dog heart. Aust J Exp Biol Med Sci. 1971 Dec;49(6):537–552. doi: 10.1038/icb.1971.60. [DOI] [PubMed] [Google Scholar]
- Paoloni H. J., Wilcken D. E. The effects of 2,6-bis(diethanolamino)-4-piperidino-pyrimido(5,4-D)pyrimidine (RA233) on the coronary circulation of the acutely transplanted dog heart: comparison with dipyridamole and adenosine. J Pharmacol Exp Ther. 1972 Oct;183(1):137–145. [PubMed] [Google Scholar]
- Parratt J. R., Grayson J. Myocardial vascular reactivity after beta-adrenergic blockade. Lancet. 1966 Feb 12;1(7433):338–340. doi: 10.1016/s0140-6736(66)91321-3. [DOI] [PubMed] [Google Scholar]
- Parratt J. R. The effect of adrenergic neurone blockade on the myocardial circulation. Br J Pharmacol Chemother. 1967 Nov;31(3):513–522. doi: 10.1111/j.1476-5381.1967.tb00416.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RALL T. W., WEST T. C. The potentiation of cardiac inotropic responses to norepinephrine by theophylline. J Pharmacol Exp Ther. 1963 Mar;139:269–274. [PubMed] [Google Scholar]
- SIEGEL J. H., SONNENBLICK E. H. Isometric time-tension relationships as an index of myocardial contractility. Circ Res. 1963 Jun;12:597–610. doi: 10.1161/01.res.12.6.597. [DOI] [PubMed] [Google Scholar]
- SIEGEL J. H., SONNENBLICK E. H., JUDGE R. D., WILSON W. S. THE QUANTIFICATION OF MYOCARDIAL CONTRACTILITY IN DOG AND MAN. Cardiologia. 1964;45:189–221. doi: 10.1159/000168110. [DOI] [PubMed] [Google Scholar]
- Siegel J. H. The myocardial contractile state and its role in the response to anesthesia and surgery. Anesthesiology. 1969 May;30(5):519–564. doi: 10.1097/00000542-196905000-00012. [DOI] [PubMed] [Google Scholar]
- Starr I., Gamble C. J., Margolies A., Donal J. S., Joseph N., Eagle E. A CLINICAL STUDY OF THE ACTION OF 10 COMMONLY USED DRUGS ON CARDIAC OUTPUT, WORK AND SIZE; ON RESPIRATION, ON METABOLIC RATE AND ON THE ELECTROCARDIOGRAM. J Clin Invest. 1937 Sep;16(5):799–823. doi: 10.1172/JCI100906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLF M. M., BERNE R. M. Coronary vasodilator properties of purine and pyrimidine derivatives. Circ Res. 1956 May;4(3):343–348. doi: 10.1161/01.res.4.3.343. [DOI] [PubMed] [Google Scholar]
- Westfall D. P., Fleming W. W. Sensitivity changes in the dog heart to norepinephrine, calcium and aminophyline resulting from pretreatment with reserpine. J Pharmacol Exp Ther. 1968 Jan;159(1):98–106. [PubMed] [Google Scholar]
- Whitsitt L. S., Lucchesi B. R. Effects of propranolol and its stereoisomers upon coronary vascular resistance. Circ Res. 1967 Sep;21(3):305–317. doi: 10.1161/01.res.21.3.305. [DOI] [PubMed] [Google Scholar]
