Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1975 Jul;54(3):367–374. doi: 10.1111/j.1476-5381.1975.tb07577.x

Decamethonium in the perfused and immersed rat diaphragm.

P P Humphrey
PMCID: PMC1666479  PMID: 1164594

Abstract

1 The water content and mannitol space of rat diaphragms which were perfused through the inferior vena cava was increased compared with immersed diaphragms. The potassium content of both preparations, when expressed in terms of dry weight, was maintained at similar values to that found in vivo. 2 Despite the application of a constant concentration of decamethonium, a steady level of neuromuscular block was not obtained in either the perfused or immersed rat diaphragm. The immersed preparation differed from the perfused preparation in that recovery from paralysis occurred despite the continued presence of the drug. 3 The rate of uptake of labelled decamethonium (100 muM) at the end-plate region was similar in the perfused and immersed diaphragm. The slopes of the regressions were 0.059 and 0.054 mul mg-1 min-1 (based on dry weight) respectively which were not significantly different. This implies that the rate of uptake of the drug at the end-plate is slow and limited by the rate of entry into the fibre rather than by diffusion to the site of entry.

Full text

PDF
367

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CREESE R., HASHISH S. E., SCHOLES N. W. Potassium movements in contracting diaphragm muscle. J Physiol. 1958 Sep 23;143(2):307–324. doi: 10.1113/jphysiol.1958.sp006061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CREESE R. Measurement of cation fluxes in rat diaphragm. Proc R Soc Lond B Biol Sci. 1954 Sep 27;142(909):497–513. doi: 10.1098/rspb.1954.0039. [DOI] [PubMed] [Google Scholar]
  3. CREESE R., NORTHOVER J. Maintenance of isolated diaphragm with normal sodium content. J Physiol. 1961 Feb;155:343–357. doi: 10.1113/jphysiol.1961.sp006632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CREESE R. Potassium in different layers of isolated diaphragm. J Physiol. 1960 Nov;154:133–144. doi: 10.1113/jphysiol.1960.sp006568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cookson J. C., Paton W. D. Mechanisms of neuromuscular block. A review article. Anaesthesia. 1969 Jul;24(3):395–416. doi: 10.1111/j.1365-2044.1969.tb02878.x. [DOI] [PubMed] [Google Scholar]
  6. Creese R., England J. M. Decamethonium in depolarized muscle and the effects of tubocurarine. J Physiol. 1970 Sep;210(2):345–361. doi: 10.1113/jphysiol.1970.sp009214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Creese R., Maclagan J. Entry of decamethonium in rat muscle studied by autoradiography. J Physiol. 1970 Sep;210(2):363–386. doi: 10.1113/jphysiol.1970.sp009215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Creese R., Taylor D. B. Entry of labeled carbachol in brain slices of the rat and the action of d-tubocurarine and strychnine. J Pharmacol Exp Ther. 1967 Aug;157(2):406–419. [PubMed] [Google Scholar]
  9. Creese R., el-Shafie A. L., Vrbová G. Sodium movements in denervated muscle and the effects of antimycin A. J Physiol. 1968 Jul;197(2):279–294. doi: 10.1113/jphysiol.1968.sp008559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. England J. M. The localization of end-plates in unstained muscle. J Anat. 1970 Mar;106(Pt 2):311–321. [PMC free article] [PubMed] [Google Scholar]
  11. Garrahan P. J., Glynn I. M. Facftors affecting the relative magnitudes of the sodium:potassium and sodium:sodium exchanges catalysed by the sodium pump. J Physiol. 1967 Sep;192(1):189–216. doi: 10.1113/jphysiol.1967.sp008296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gissen A. J., Nastuk W. L. The mechanisms underlying neuromuscular block following prolonged exposure to depolarizing agents. Ann N Y Acad Sci. 1966 Jan 26;135(1):184–194. doi: 10.1111/j.1749-6632.1966.tb45472.x. [DOI] [PubMed] [Google Scholar]
  13. HOLMES P. E. B., JENDEN D. J., TAYLOR D. B. The analysis of the mode of action of curare on neuromuscular transmission; the effect of temperature changes. J Pharmacol Exp Ther. 1951 Dec;103(4):382–402. [PubMed] [Google Scholar]
  14. Humphrey P. P. Depolarization and neuromuscular block in the rat. Br J Pharmacol. 1973 Mar;47(3):636P–637P. [PMC free article] [PubMed] [Google Scholar]
  15. Humphrey P. P. Saturation effects in the uptake of decamethonium in skeletal muscle. Br J Pharmacol. 1970 May;39(1):219P–220P. [PMC free article] [PubMed] [Google Scholar]
  16. KEYNES R. D. The ionic fluxes in frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):359–382. doi: 10.1098/rspb.1954.0030. [DOI] [PubMed] [Google Scholar]
  17. MACLAGAN J. A comparison of the responses of the tenuissimus muscle to neuromuscular blocking drugs in vivo and in vitro. Br J Pharmacol Chemother. 1962 Feb;18:204–216. doi: 10.1111/j.1476-5381.1962.tb01165.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mackay D., Taylor D. B. Uptake of 3H-labelled polymethylene bisquaternary ammonium ions by mouse isolated diaphragm. Eur J Pharmacol. 1970 Feb;9(2):195–206. doi: 10.1016/0014-2999(70)90300-6. [DOI] [PubMed] [Google Scholar]
  19. PATON W. D. Mode of action of neuromuscular blocking agents. Br J Anaesth. 1956 Oct;28(10):470–480. doi: 10.1093/bja/28.10.470. [DOI] [PubMed] [Google Scholar]
  20. Taylor D. B., Creese R., Nedergaard O. A., Case R. Labelled depolarizing drugs in normal and denervated muscle. Nature. 1965 Nov 27;208(5013):901–902. doi: 10.1038/208901a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES