Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1976 Feb;56(2):201–207. doi: 10.1111/j.1476-5381.1976.tb07443.x

Effects of chronic nicotine administration on the denervated rat adrenal medulla.

F J Seidler, T A Slotkin
PMCID: PMC1666872  PMID: 3249

Abstract

1 The effects of chronic nicotine administration (1 or 10 mg/kg, s.c., twice daily) were studied in intact and denervated rat adrenal glands to determine the relative roles of central input and direct actions on catecholamines. 2 Catecholamine depletion was obtained in the intact glands from 1-7 days of treatment with 10 mg/kg, with recovery by 14 days of treatment; catecholamines were not decreased in denervated adrenal glands. 3 Catecholamine depletion was accompanied by a decline in functional storage vesicles (determined by [3H]-adrenaline uptake per gland) in the intact side, while no change was seen in the denervated side; the proportion of newly synthesized vesicles increased markedly during 1-7 days of treatment with 10 mg/kg in the intact side, while a much smaller increase of shorter duration was seen in the denervated adrenal gland. 4 Chronic nicotine administration at either dose level induced tyrosine hydroxylase in both intact and denervated glands, but the increase occurred more slowly in the denervated glands. 5 Dopamine beta-hydroxylase levels increased similarly in both sides during treatment with nicotine (10 mg/kg). 6 These studies suggest that although long-term adrenal denervation eliminates the catecholamine depletion caused by chronic administration of nicotine, the mechanisms for induction of catecholamine synthesizing enzymes are still capable of responding to the drug.

Full text

PDF
201

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson T. R., Schanberg S. M. Effect of thyroxine and cortisol on brain ornithine decarboxylase activity and swimming behavior in developing rat. Biochem Pharmacol. 1975 Feb 15;24(4):495–501. doi: 10.1016/0006-2952(75)90136-7. [DOI] [PubMed] [Google Scholar]
  2. Anderson T. R., Slotkin T. A. Effects of morphine on the rat adrenal medulla. Biochem Pharmacol. 1975 Mar 15;24(6):671–679. doi: 10.1016/0006-2952(75)90242-7. [DOI] [PubMed] [Google Scholar]
  3. Byus C. V., Russell D. H. Effects of methyl xanthine derivatives on cyclic AMP levels and ornithine decarboxylase activity of rat tissues. Life Sci. 1974 Dec 1;15(11):1991–1997. doi: 10.1016/0024-3205(74)90049-6. [DOI] [PubMed] [Google Scholar]
  4. Carlsson A., Lindqvist M. Studies on the neurogenic short-term control of adrenomedullary hormone synthesis. J Neural Transm. 1974;35(3):181–196. doi: 10.1007/BF01258950. [DOI] [PubMed] [Google Scholar]
  5. Friedman S., Kaufman S. 3,4-dihydroxyphenylethylamine beta-hydroxylase. Physical properties, copper content, and role of copper in the catalytic acttivity. J Biol Chem. 1965 Dec;240(12):4763–4773. [PubMed] [Google Scholar]
  6. Gewirtz G. P., Kvetnanský R., Weise V. K., Kopin I. J. Effect of hypophysectomy on adrenal dopamine -hydroxylase activity in the rat. Mol Pharmacol. 1971 Mar;7(2):163–168. [PubMed] [Google Scholar]
  7. Kershbaum A., Pappajohn D. J., Bellet S., Hirabayashi M., Shafiiha H. Effect of smoking and nicotine on adrenocortical secretion. JAMA. 1968 Jan 22;203(4):275–278. [PubMed] [Google Scholar]
  8. MERRILLS R. J. A SEMIAUTOMATIC METHOD FOR DETERMINATION OF CATECHOLAMINES. Anal Biochem. 1963 Sep;6:272–282. doi: 10.1016/0003-2697(63)90135-0. [DOI] [PubMed] [Google Scholar]
  9. Mueller R. A., Thoenen H., Axelrod J. Effect of pituitary and ACTH on the maintenance of basal tyrosine hydroxylase activity in the rat adrenal gland. Endocrinology. 1970 Apr;86(4):751–755. doi: 10.1210/endo-86-4-751. [DOI] [PubMed] [Google Scholar]
  10. Mueller R. A., Thoenen H., Axelrod J. Inhiition of neuronally induced tyrosine hydroxylase by nitinic receptor blockade. Eur J Pharmacol. 1970 Apr;10(1):51–56. doi: 10.1016/0014-2999(70)90156-1. [DOI] [PubMed] [Google Scholar]
  11. Patrick R. L., Kirshner N. Effect of stimulation on the levels of tyrosine hydroxylase, dopamine beta-hydroxylase, and catecholamines in intact and denervated rat adrenal glands. Mol Pharmacol. 1971 Jan;7(1):87–96. [PubMed] [Google Scholar]
  12. Rubin R. P., Warner W. Nicotine-induced stimulation of steroidogenesis in adrenocortical cells of the cat. Br J Pharmacol. 1975 Mar;53(3):357–362. doi: 10.1111/j.1476-5381.1975.tb07371.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schneider F. H. Secretion from the cortex-free bovine adrenal medulla. Br J Pharmacol. 1969 Oct;37(2):371–379. doi: 10.1111/j.1476-5381.1969.tb10574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Slotkin T. A., Kirshner N. All-or-none secretion of adrenal medullary storage vesicle contents in the rat. Biochem Pharmacol. 1973 Jan 15;22(2):205–219. doi: 10.1016/0006-2952(73)90274-8. [DOI] [PubMed] [Google Scholar]
  15. Slotkin T. A., Kirshner N. Recovery of rat adrenal amine stores after insulin administration. Mol Pharmacol. 1973 Jan;9(1):105–116. [PubMed] [Google Scholar]
  16. Slotkin T. A., Kirshner N. Uptake, storage, and distribution of amines in bovine adrenal medullary vesicles. Mol Pharmacol. 1971 Nov;7(6):581–592. [PubMed] [Google Scholar]
  17. Slotkin T. A., Seidler F. J. Acute and chronic effects of nicotine on synthesis and storage of catecholamines in the rat adrenal medulla. Life Sci. 1975 May 15;16(10):1613–1622. doi: 10.1016/0024-3205(75)90079-x. [DOI] [PubMed] [Google Scholar]
  18. Suzuki T., Ikeda H., Narita S., Shibata O., Waki S. Adrenal cortical secretion in response to nicotine in conscious and anaesthetized dogs. Q J Exp Physiol Cogn Med Sci. 1973 Apr;58(2):139–142. [PubMed] [Google Scholar]
  19. Thoenen H., Mueller R. A., Axelrod J. Trans-synaptic induction of adrenal tyrosine hydroxylase. J Pharmacol Exp Ther. 1969 Oct;169(2):249–254. [PubMed] [Google Scholar]
  20. Thoenen H. Trans-synaptic enzyme induction. Life Sci. 1974 Jan 16;14(2):223–235. doi: 10.1016/0024-3205(74)90052-6. [DOI] [PubMed] [Google Scholar]
  21. Tsujimoto A., Nishikawa T. Comparison of the effects of nicotine on catecholamine release from isolated adrenal glands of dogs and monkeys. Eur J Pharmacol. 1974 Dec;29(2):316–319. doi: 10.1016/0014-2999(74)90033-8. [DOI] [PubMed] [Google Scholar]
  22. Viveros O. H., Arqueros L., Connett R. J., Kirshner N. Mechanism of secretion from the adrenal medulla. IV. The fate of the storage vesicles following insulin and reserpine administration. Mol Pharmacol. 1969 Jan;5(1):69–82. [PubMed] [Google Scholar]
  23. Viveros O. H., Arqueros L., Kirshner N. Mechanism of secretion from the adrenal medulla. VII. Effect of insulin administration on the buoyant density, dopamine -hydroxylase, and catecholamine content of adrenal storage vesicles. Mol Pharmacol. 1971 Jul;7(4):444–454. [PubMed] [Google Scholar]
  24. Waymire J. C., Bjur R., Weiner N. Assay of tyrosine hydroxylase by coupled decarboxylation of DOPA formed from 1- 14 C-L-tyrosine. Anal Biochem. 1971 Oct;43(2):588–600. doi: 10.1016/0003-2697(71)90291-0. [DOI] [PubMed] [Google Scholar]
  25. Weinshilboum R., Axelrod J. Dopamine-beta-hydroxylase activity in the rat after hypophysectomy. Endocrinology. 1970 Nov;87(5):894–899. doi: 10.1210/endo-87-5-894. [DOI] [PubMed] [Google Scholar]
  26. Yoshizaki T. Effect of histamine, bradykinin and morphine on adrenaline release from rat adrenal gland. Jpn J Pharmacol. 1973 Oct;23(5):695–699. doi: 10.1254/jjp.23.695. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES