Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1976 Apr;56(4):431–436. doi: 10.1111/j.1476-5381.1976.tb07454.x

Effects of mazindol, a non-phenylethylamine anorexigenic agent, on biogenic amine levels and turnover rate.

M O Carruba, A Groppetti, P Mantegazza, L Vicentini, F Zambotti
PMCID: PMC1666899  PMID: 1260223

Abstract

1 Mazindol is a new anorexigenic agent which possesses a different chemical structure from that of phenylethylamines, but shows a pharmacological profile similar to that of (+)-amphetamine. 2 Mazindol neither altered whole brain monoamine levels (noradrenaline (NA), dopamine, 5-hydroxytryptamine (5-HT)) nor changed NA levels in the hypothalamus or dopamine levels in the caudate nucleus. 3 Mazindol enhanced dopamine turnover rate in the caudate nucleus, as shown by the increased rate of dopamine decline after blockade of catecholamine synthesis by alpha-methyl-p-tyrosine and decreased the conversion index of (3H)-tyrosine into brain NA. 4 Mazindol administration did not modify pargyline-induced decline of 5-hydroxyindoleacetic acid suggesting that 5-HT turnover is not altered by this drug.

Full text

PDF
431

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andén N. E., Butcher S. G., Corrodi H., Fuxe K., Ungerstedt U. Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol. 1970;11(3):303–314. doi: 10.1016/0014-2999(70)90006-3. [DOI] [PubMed] [Google Scholar]
  2. Brodie B. B., Comer M. S., Costa E., Dlabac A. The role of brain serotonin in the mechanism of the central action of reserpine. J Pharmacol Exp Ther. 1966 May;152(2):340–349. [PubMed] [Google Scholar]
  3. Brodie B. B., Costa E., Dlabac A., Neff N. H., Smookler H. H. Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J Pharmacol Exp Ther. 1966 Dec;154(3):493–498. [PubMed] [Google Scholar]
  4. CHANG C. C. A SENSITIVE METHOD FOR SPECTROPHOTOFLUOROMETRIC ASSAY OF CATECHOLAMINES. Int J Neuropharmacol. 1964 Dec;3:643–649. doi: 10.1016/0028-3908(64)90089-9. [DOI] [PubMed] [Google Scholar]
  5. Carr L. A., Moore K. E. Norepinephrine: release from brain by d-amphetamine in vivo. Science. 1969 Apr 18;164(3877):322–323. doi: 10.1126/science.164.3877.322. [DOI] [PubMed] [Google Scholar]
  6. Clineschmidt B. V. 5,6-Dihydroxytryptamine: suppression of the anorexigenic action of fenfluramine. Eur J Pharmacol. 1973 Dec;24(3):405–409. doi: 10.1016/0014-2999(73)90170-2. [DOI] [PubMed] [Google Scholar]
  7. Costa E., Groppetti A., Revuelta A. Action of fenfluramine on monoamine stores of rat tissues. Br J Pharmacol. 1971 Jan;41(1):57–64. doi: 10.1111/j.1476-5381.1971.tb09935.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Curzon G., Green A. R. Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain. Br J Pharmacol. 1970 Jul;39(3):653–655. doi: 10.1111/j.1476-5381.1970.tb10373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duce M., Gessa G. L. Deplezione di catecolamine centrali e periferiche indotta de fenfluramina. Boll Soc Ital Biol Sper. 1966 Nov 30;42(22):1631–1632. [PubMed] [Google Scholar]
  10. Duhault J., Verdavainne C. Modification du taux de sérotonine cérébrale chez le rat par les trifluorométhyl-phényl-2 éthyl aminopropane (Fenfluramine 768 S) Arch Int Pharmacodyn Ther. 1967 Dec;170(2):276–286. [PubMed] [Google Scholar]
  11. Engstrom R. G., Kelly L. A., Gogerty J. H. The effects of 5-hydroxy-5(4'-chlorophenyl)-2, 3-dihydro-5H-imidazo (2, 1-a) isoindole (mazindol, SaH 42-548) on the metabolism of brain norepinephrine. Arch Int Pharmacodyn Ther. 1975 Apr;214(2):308–321. [PubMed] [Google Scholar]
  12. Funderburk W. H., Hazelwood J. C., Ruckart R. T., Ward J. W. Is 5-hydroxytryptamine involved in the mechanism of action of fenfluramine? J Pharm Pharmacol. 1971 Jun;23(6):468–470. doi: 10.1111/j.2042-7158.1971.tb08690.x. [DOI] [PubMed] [Google Scholar]
  13. Groppetti A., Costa E. Tissue concentrations of p-hydroxynorephedrine in rats injected with d-amphetamine: effect of pretreatment with desipramine. Life Sci. 1969 Jun 1;8(11):653–665. doi: 10.1016/0024-3205(69)90027-7. [DOI] [PubMed] [Google Scholar]
  14. Groppetti A., Misher A., Naimzada M., Revuelta A., Costa E. Evidence that in rats 1-benzyl- -methoxy-3-trifluoromethylphenethylamine (SK& F 1-39728) dissociates anorexia from central stimulation and actions on brain monoamine stores. J Pharmacol Exp Ther. 1972 Sep;182(3):464–473. [PubMed] [Google Scholar]
  15. HAEGGENDAL J. AN IMPROVED METHOD FOR FLUORIMETRIC DETERMINATION OF SMALL AMOUNTS OF ADRENALINE AND NORADRENALINE IN PLASMA AND TISSUES. Acta Physiol Scand. 1963 Nov;59:242–254. doi: 10.1111/j.1748-1716.1963.tb02739.x. [DOI] [PubMed] [Google Scholar]
  16. Holtzman S. G., Jewett R. E. The role of brain norepinephrine in the anorexic effects of dextroamphetamine and monoamine oxidase inhibitors in the rat. Psychopharmacologia. 1971;22(2):151–161. doi: 10.1007/BF00403623. [DOI] [PubMed] [Google Scholar]
  17. Jespersen S., Scheel-Krüger J. Evidence for a difference in mechanism of action between fenfluramine- and amphetamine-induced anorexia. J Pharm Pharmacol. 1973 Jan;25(1):49–54. doi: 10.1111/j.2042-7158.1973.tb09114.x. [DOI] [PubMed] [Google Scholar]
  18. Jori A., Dolfini E. On the effect of anorectic drugs on striatum homovanillic acid in rats. Pharmacol Res Commun. 1974 Apr;6(2):175–178. doi: 10.1016/s0031-6989(74)80025-1. [DOI] [PubMed] [Google Scholar]
  19. Kruk Z. L. Dopamine and 5-hydroxytryptamine inhibit feeding in rats. Nat New Biol. 1973 Nov 14;246(150):52–53. doi: 10.1038/newbio246052a0. [DOI] [PubMed] [Google Scholar]
  20. Leibowitz S. F. Amphetamine: possible site and mode of action for producing anorexia in the rat. Brain Res. 1975 Jan 24;84(1):160–167. doi: 10.1016/0006-8993(75)90811-2. [DOI] [PubMed] [Google Scholar]
  21. MCLEAN J. R., MCCARTNEY M. Effect of D-amphetamine on rat brain noradrenaline and serotonin. Proc Soc Exp Biol Med. 1961 May;107:77–79. doi: 10.3181/00379727-107-26540. [DOI] [PubMed] [Google Scholar]
  22. MOORE K. E., LARIVIERE E. W. EFFECTS OF D-AMPHETAMINE AND RESTRAINT ON THE CONTENT OF NOREPINEPHRINE AND DOPAMINE IN RAT BRAIN. Biochem Pharmacol. 1963 Nov;12:1283–1288. doi: 10.1016/0006-2952(63)90196-5. [DOI] [PubMed] [Google Scholar]
  23. Neff N. H., Spano P. F., Groppetti A., Wang C. T., Costa E. A simple procedure for calculating the synthesis rate of norepinephrine, dopamine and serotonin in rat brain. J Pharmacol Exp Ther. 1971 Mar;176(3):701–710. [PubMed] [Google Scholar]
  24. Opitz K. Anorexigene Phenylalkylamine und Serotoninstoffwechsel. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1967;259(1):58–65. [PubMed] [Google Scholar]
  25. SPECTOR S., SJOERDSMA A., UDENFRIEND S. BLOCKADE OF ENDOGENOUS NOREPINEPHRINE SYNTHESIS BY ALPHA-METHYL-TYROSINE, AN INHIBITOR OF TYROSINE HYDROXYLASE. J Pharmacol Exp Ther. 1965 Jan;147:86–95. [PubMed] [Google Scholar]
  26. Samanin R., Ghezzi D., Valzelli L., Garattini S. The effects of selective lesioning of brain serotonin or catecholamine containing neurones on the anorectic activity of fenfluramine and amphetamine. Eur J Pharmacol. 1972 Sep;19(3):318–322. doi: 10.1016/0014-2999(72)90097-0. [DOI] [PubMed] [Google Scholar]
  27. Weissman A., Koe B. K., Tenen S. S. Antiamphetamine effects following inhibition of tyrosine hydroxylase. J Pharmacol Exp Ther. 1966 Mar;151(3):339–352. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES