Abstract
The possibility that corticosterone-induced hypercontractility in the rat anococcygeus muscle might be due to an intramuscular redistribution of Na+ was investigated. 2 The contractility of the isolated muscle to noradrenaline (NA) was directly dependent on the Na+ concentration of the Krebs solution. 3 There was a linear relationship between the maximum contractile response of the muscle to NA and the Na+ concentration of the Krebs solution. 4 Muscle contractility was also increased by the presence of ouabain (10(-4)M) in the bathing medium. 5 Muscles from rats treated with corticosterone exhibited increases in both total and ouabain-sensitive ATPase activity. 6 The relationship between corticosterone, Na+ distribution, and muscle contractility is discussed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BECK J. C., McGARRRY E. E. Physiological importance of cortisol. Br Med Bull. 1962 May;18:134–140. doi: 10.1093/oxfordjournals.bmb.a069954. [DOI] [PubMed] [Google Scholar]
- BULBRING E., KURIYAMA H. Effects of changes in ionic environment on the action of acetylcholine and adrenaline on the smooth muscle cells of guinea-pig taenia coli. J Physiol. 1963 Apr;166:59–74. doi: 10.1113/jphysiol.1963.sp007090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodie B. B., Davies J. I., Hynie S., Krishna G., Weiss B. Interrelationships of catecholamines with other endocrine systems. Pharmacol Rev. 1966 Mar;18(1):273–289. [PubMed] [Google Scholar]
- Chignell C. F., Titus E. Effect of adrenal steroids on a Na+- and K+-requiring adenosine triphosphatase from rat kidney. J Biol Chem. 1966 Nov 10;241(21):5083–5089. [PubMed] [Google Scholar]
- GOODFORD P. J. The sodium content of the smooth muscle of the guinea-pig taenia coli. J Physiol. 1962 Oct;163:411–422. doi: 10.1113/jphysiol.1962.sp006986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson A., Pollock D. Reduction in the cholinesterase activity of the rat anococcygeus muscle produced by corticosterone. Br J Pharmacol. 1975 Sep;55(1):69–72. doi: 10.1111/j.1476-5381.1975.tb07612.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson A., Pollock D. The effects of drugs on the sensitivity of the rat anococcygeus muscle to agonists. Br J Pharmacol. 1973 Nov;49(3):506–513. doi: 10.1111/j.1476-5381.1973.tb17261.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson A., Pollock D. The involvement of corticosteroids in the supersensitivity produced in the rat anococcygeus muscle by morphine withdrawal, thyroidectomy or a single dose of reserpine. J Pharmacol Exp Ther. 1975 Feb;192(2):390–398. [PubMed] [Google Scholar]
- Gillespie J. S. The rat anococcygeus muscle and its response to nerve stimulation and to some drugs. Br J Pharmacol. 1972 Jul;45(3):404–416. doi: 10.1111/j.1476-5381.1972.tb08097.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendler E. D., Torretti J., Kupor L., Epstein F. H. Effects of adrenalectomy and hormone replacement on Na- K-ATPase in renal tissue. Am J Physiol. 1972 Mar;222(3):754–760. doi: 10.1152/ajplegacy.1972.222.3.754. [DOI] [PubMed] [Google Scholar]
- Hosie R. J. The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain. Biochem J. 1965 Aug;96(2):404–412. doi: 10.1042/bj0960404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iversen L. L. Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol. 1971 Apr;41(4):571–591. doi: 10.1111/j.1476-5381.1971.tb07066.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee K. S., Klaus W. The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev. 1971 Sep;23(3):193–261. [PubMed] [Google Scholar]
- RAAB W., HUMPHREYS R. J., MAKOUS N., DeGRANDPRE R., GIGEE W. Pressor effects of epinephrine, norepinephrine and desoxycorticosterone acetate weakened by sodium withdrawal. Circulation. 1952 Sep;6(3):373–377. doi: 10.1161/01.cir.6.3.373. [DOI] [PubMed] [Google Scholar]
- ROSS E. J. The adrenal medulla, the adrenal cortex, sodium and blood pressure. Proc R Soc Med. 1961 Nov;54:1005–1006. doi: 10.1177/003591576105401117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- SWINGLE W. W., DAVANZO J. P., GLENISTER D., WAGLE G., OSBORNE M., ROWEN R. Effect of mineralo- and glucoccoticoids on fasted adrenalectomized dogs subjected to electroshock. Proc Soc Exp Biol Med. 1960 Jun;104:184–188. doi: 10.3181/00379727-104-25773. [DOI] [PubMed] [Google Scholar]
- Selye H., Hall C. E., Rowley E. M. Malignant Hypertension Produced by Treatment with Desoxycorticosterone Acetate and Sodium Chloride. Can Med Assoc J. 1943 Aug;49(2):88–92. [PMC free article] [PubMed] [Google Scholar]
- Sharp G. W., Leaf A. Mechanism of action of aldosterone. Physiol Rev. 1966 Oct;46(4):593–633. doi: 10.1152/physrev.1966.46.4.593. [DOI] [PubMed] [Google Scholar]
- YAMABAYASHI H., HAMILTON W. F. Effect of sodium ion on contractility of the dog's aortic strip in response to catecholamines. Am J Physiol. 1959 Nov;197:993–996. doi: 10.1152/ajplegacy.1959.197.5.993. [DOI] [PubMed] [Google Scholar]
