Abstract
1 Aminophylline and other methylxanthines increase brain tryptophan and hence 5-hydroxytryptamine turnover. The mechanism of this effect of aminophylline was investigated. 2 At lower doses (greater than 100 mg/kg i.p.) the brain tryptophan increase could be explained by the lipolytic action of the drug, i.e. increased plasma unesterified fatty acid freeing plasma tryptophan from protein binding so that it became available to the brain. 3 Plasma unesterified fatty acid did not increase when aminophylline (109 mg/kg i.p.) was given to nicotinamide-treated rats but as both plasma total and free tryptophan rose, a tryptophan increase in the brain still occurred. 4 The rise in brain tryptophan concentration following the injection of a higher dose of the drug (150 mg/kg i.p.) could no longer be explained by a rise of plasma free tryptophan as the ratio of brain tryptophan to plasma free tryptophan rose considerably. Plasma total tryptophan fell and the plasma insulin concentration rose. 5 The increase of brain tryptophan concentration after injection of 150 mg/kg aminophylline appeared specific for this amino acid as brain tyrosine and phenyllanine did not increase. However as their plasma concentrations fell the brain/plasma ratio for all three amino acids rose. 6 The higher dose of aminophylline increased the muscle concentration of tryptophan but that of tyrosine fell and that of phenylalanine remained unaltered. The liver concentrations were not affected. 7 The aminophylline-induced increase of the ratio of brain tryptophan of plasma free tryptophan no longer occurred when the drug was given to animals injected with the beta-adrenoreceptor blocking agent propranolol or the diabetogenic agent streptozotocin. 8 The changes in brain tryptophan upon aminophylline injection may be explained by (a) increased availability of plasma tryptophan to the brain due to increased lipolysis and (b) increased effectiveness of uptake of tryptophan by the brain due to increased insulin secretion.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arison R. N., Ciaccio E. I., Glitzer M. S., Cassaro J. A., Pruss M. P. Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes. 1967 Jan;16(1):51–56. doi: 10.2337/diab.16.1.51. [DOI] [PubMed] [Google Scholar]
- Balasse E. O., Ooms H. A. Role of plasma free fatty acids in the control of insulin secretion in man. Diabetologia. 1973 Apr;9(2):145–151. doi: 10.1007/BF01230695. [DOI] [PubMed] [Google Scholar]
- Berkowitz B. A., Spector S. The effect of caffeine and theophylline on the disposition of brain serotonin in the rat. Eur J Pharmacol. 1971 Nov-Dec;16(3):322–325. doi: 10.1016/0014-2999(71)90034-3. [DOI] [PubMed] [Google Scholar]
- Burns T. W., Mohs J. M., Langley P. E., Yawn R., Chase G. R. Regulation of human lipolysis. In vivo observations on the role of adrenergic receptors. J Clin Invest. 1974 Jan;53(1):338–341. doi: 10.1172/JCI107556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butcher R. W., Baird C. E., Sutherland E. W. Effects of lipolytic and antilipolytic substances on adenosine 3',5'-monophosphate levels in isolated fat cells. J Biol Chem. 1968 Apr 25;243(8):1705–1712. [PubMed] [Google Scholar]
- Butcher R. W., Ho R. J., Meng H. C., Sutherland E. W. Adenosine 3',5'-monophosphate in biological materials. II. The measurement of adenosine 3',5'-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J Biol Chem. 1965 Nov;240(11):4515–4523. [PubMed] [Google Scholar]
- Curzon G., Friedel J., Knott P. J. The effect of fatty acids on the binding of tryptophan to plasma protein. Nature. 1973 Mar 16;242(5394):198–200. doi: 10.1038/242198a0. [DOI] [PubMed] [Google Scholar]
- Curzon G., Joseph M. H., Knott P. J. Effects of immobilization and food deprivation on rat brain tryptophan metabolism. J Neurochem. 1972 Aug;19(8):1967–1974. doi: 10.1111/j.1471-4159.1972.tb01486.x. [DOI] [PubMed] [Google Scholar]
- Curzon G., Kantamaneni B. D., Winch J., Rojas-Bueno A., Murray-Lyon I. M., Williams R. Plasma and brain tryptophan changes in experimental acute hepatic failure. J Neurochem. 1973 Jul;21(1):137–145. doi: 10.1111/j.1471-4159.1973.tb04233.x. [DOI] [PubMed] [Google Scholar]
- Curzon G., Knott P. J. Effects on plasma and brain tryptophan in the rat of drugs and hormones that influence the concentration of unesterified fatty acid in the plasma. Br J Pharmacol. 1974 Feb;50(2):197–204. doi: 10.1111/j.1476-5381.1974.tb08562.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curzon G., Knott P. J., Murray-Lyon I. M., Record C. O., Williams R. Letter: Disturbed brain tryptophan metabolism in hepatic coma. Lancet. 1975 May 10;1(7915):1092–1093. doi: 10.1016/s0140-6736(75)91868-1. [DOI] [PubMed] [Google Scholar]
- Curzon G. Tryptophan pyrrolase--a biochemical factor in depressive illness? Br J Psychiatry. 1969 Dec;115(529):1367–1374. doi: 10.1192/bjp.115.529.1367. [DOI] [PubMed] [Google Scholar]
- Dickerson J. W., Pao S. K. The effect of a low protein diet and exogenous insulin on brain tryptophan and its metabolites in the weanling rat. J Neurochem. 1975 Nov;25(5):559–564. doi: 10.1111/j.1471-4159.1975.tb04368.x. [DOI] [PubMed] [Google Scholar]
- Eccleston D., Ashcroft G. W., Crawford T. B. 5-hydroxyindole metabolism in rat brain. A study of intermediate metabolism using the technique of tryptophan loading. II. Applications and drug studies. J Neurochem. 1965 Jun;12(6):493–503. doi: 10.1111/j.1471-4159.1965.tb06776.x. [DOI] [PubMed] [Google Scholar]
- Fernstrom J. D., Wurtman R. J. Brain serotonin content: increase following ingestion of carbohydrate diet. Science. 1971 Dec 3;174(4013):1023–1025. doi: 10.1126/science.174.4013.1023. [DOI] [PubMed] [Google Scholar]
- Friedman P. A., Kappelman A. H., Kaufman S. Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. J Biol Chem. 1972 Jul 10;247(13):4165–4173. [PubMed] [Google Scholar]
- Gelehrter T. D., Tomkins G. M. Posttranscriptional control of tyrosine aminotransferase synthesis by insulin. Proc Natl Acad Sci U S A. 1970 Jun;66(2):390–397. doi: 10.1073/pnas.66.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green A. R., Woods H. F., Knott P. G., Curzon G. Letter: Factors influencing effect of hydrocortisone on rat brain tryptophan metabolism. Nature. 1975 May 8;255(5504):170–170. doi: 10.1038/255170a0. [DOI] [PubMed] [Google Scholar]
- Héry R., Rouer E., Kan J. P., Glowinski J. The major role of the tryptophan active transport in the diurnal variations of 5-hydroxytryptamine synthesis in the rat brain. Adv Biochem Psychopharmacol. 1974;11(0):163–167. [PubMed] [Google Scholar]
- Kiely M., Sourkes T. L. Transport of L-tryptophan into slices of rat cerebral cortex. J Neurochem. 1972 Dec;19(12):2863–2872. doi: 10.1111/j.1471-4159.1972.tb03824.x. [DOI] [PubMed] [Google Scholar]
- Knott P. J., Curzon G. Free tryptophan in plasma and brain tryptophan metabolism. Nature. 1972 Oct 20;239(5373):452–453. doi: 10.1038/239452a0. [DOI] [PubMed] [Google Scholar]
- Knott P. J., Curzon G. Tryptophan and tyrosine disposition and brain tryptophan metabolism in acute carbon tetrachloride poisoning. Biochem Pharmacol. 1975 May 1;24(9):963–966. doi: 10.1016/0006-2952(75)90428-1. [DOI] [PubMed] [Google Scholar]
- Mabry P. D., Campbell B. A. Serotonergic inhibition of catecholamine-induced behavioral arousal. Brain Res. 1973 Jan 30;49(2):381–391. doi: 10.1016/0006-8993(73)90429-0. [DOI] [PubMed] [Google Scholar]
- Madras B. K., Cohen E. L., Messing R., Munro H. N., Wurtman R. J. Relevance of free tryptophan in serum to tissue tryptophan concentrations. Metabolism. 1974 Dec;23(12):1107–1116. doi: 10.1016/0026-0495(74)90027-4. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Malaisse-Lagae F. Stimulation of insulin secretion by noncarbohydrate metabolites. J Lab Clin Med. 1968 Sep;72(3):438–448. [PubMed] [Google Scholar]
- Manchester K. L. The control by insulin of amino acid accumulation in muscle. Biochem J. 1970 Apr;117(3):457–465. doi: 10.1042/bj1170457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munro H. N., Fernstrom J. D., Wurtman R. J. Insulin, plasma aminoacid imbalance, and hepatic coma. Lancet. 1975 Mar 29;1(7909):722–724. doi: 10.1016/s0140-6736(75)91632-3. [DOI] [PubMed] [Google Scholar]
- Oldendorf W. H. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol. 1971 Dec;221(6):1629–1639. doi: 10.1152/ajplegacy.1971.221.6.1629. [DOI] [PubMed] [Google Scholar]
- Paalzow G., Paalzow L. Theophylline increased sensitivity to nociceptive stimulation and regional turnover of rat brain 5-HT, noradrenaline and dopamine. Acta Pharmacol Toxicol (Copenh) 1974 Mar;34(3):157–173. doi: 10.1111/j.1600-0773.1974.tb03494.x. [DOI] [PubMed] [Google Scholar]
- Petkov V., Usunov P., Kushev V. The role of 3',5'-AMP system in amino acid transport across the blood-brain barrier. Acta Biol Med Ger. 1974;33(4):371–383. [PubMed] [Google Scholar]
- Tagliamonte A., Biggio G., Vargiu L., Gessa G. L. Free tryptophan in serum controls brain tryptophan level and serotonin synthesis. Life Sci II. 1973 Mar 22;12(6):277–287. doi: 10.1016/0024-3205(73)90361-5. [DOI] [PubMed] [Google Scholar]
- Tagliamonte A., Tagliamonte P., Forn J., Perez-Cruet J., Krishna G., Gessa G. L. Stimulation of brain serotonin synthesis by dibutyryl-cyclic AMP in rats. J Neurochem. 1971 Jul;18(7):1191–1196. doi: 10.1111/j.1471-4159.1971.tb00218.x. [DOI] [PubMed] [Google Scholar]
- Turtle J. R., Littleton G. K., Kipnis D. M. Stimulation of insulin secretion by theophylline. Nature. 1967 Feb 18;213(5077):727–728. doi: 10.1038/213727a0. [DOI] [PubMed] [Google Scholar]
- Wicks W. D. Tyrosine-alpha-ketoglutarate transaminase: induction by epinephrine and adenosine-3',5'-cyclic phosphate. Science. 1968 May 31;160(3831):997–998. doi: 10.1126/science.160.3831.997. [DOI] [PubMed] [Google Scholar]
- Wooten G. F., Thoa N. B., Kopin I. J., Axelrod J. Enhanced release of dopamine -hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cyclic adenosine 3', 5'-monophosphate and theophylline. Mol Pharmacol. 1973 Mar;9(2):178–183. [PubMed] [Google Scholar]
- Young S. N., Oravec M., Sourkes T. L. The effect of theophylline on tryptophan pyrrolase in the hypophysectomized rat and some observations on the validity of tryptophan pyrrolase assays. J Biol Chem. 1974 Jun 25;249(12):3932–3936. [PubMed] [Google Scholar]
