Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1977 Oct;61(2):297–305. doi: 10.1111/j.1476-5381.1977.tb08419.x

Electrocortical changes induced by the perfusion of noradrenaline, acetylcholine and their antagonists directly into the dorsal raphé nucleus of the cat.

B J Key, L Krzywoskinski
PMCID: PMC1667517  PMID: 922258

Abstract

1 The electrocortical changes induced by the perfusion of drugs directly into the dorsal raphé nucleus of the cat encéphale isolé preparation have been studied. 2 (-)-Noradrenaline (NA), (-)-adrenaline, or (-)-isoprenaline (Isop) produced intermittent or sustained electrocortical desynchronization during the perfusion period. 3 These changes were markedly attenuated or completely abolished by the prior perfusion of (+/-)-sotalol or (-)-propranolol, but not by equimolecular concentrations of (+)-propranolol. 4 The effects of NA or Isop were also blocked by phentolamine, whereas phenoxybenzamine either potentiated the responses to NA and Isop or mimicked the effects of these catecholamines. 5 The effect of dopamine was similar to that induced by NA, but could not be elicited at all of the perfusion sites where NA was effective. It could be blocked by (+/-)-sotalol or (-)-propranolol and also by the prior perfusion of fusaric acid. 6 Acetylcholine (ACh) increased, or initiated, electrocortical synchronization. These effects could be antagonized by sensory stimulation, the prior perfusion of atropine, or the simultaneous perfusion of NA at the same site. 7 Lignocaine, induced prolonged electrocortical desynchronization, behavioral alerting and an increased responsiveness to sensory stimulation. 8 The results have been discussed in relation to the possible involvement of inhibitory beta-adrenoceptors and facilitatory cholinoceptors (muscarinic) in the functioning of the dorsal raphé nucleus.

Full text

PDF
297

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W., Davis J. N., Lefkowitz R. J. Direct identification and characterisation of beta-adrenergic receptors in rat brain. Nature. 1975 Dec 4;258(5534):437–440. doi: 10.1038/258437a0. [DOI] [PubMed] [Google Scholar]
  2. BRADLEY P. B., ELKES J. The effects of some drugs on the electrical activity of the brain. Brain. 1957 Mar;80(1):77–117. doi: 10.1093/brain/80.1.77. [DOI] [PubMed] [Google Scholar]
  3. Bobillier P., Seguin S., Petitjean F., Salvert D., Touret M., Jouvet M. The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res. 1976 Sep 3;113(3):449–486. doi: 10.1016/0006-8993(76)90050-0. [DOI] [PubMed] [Google Scholar]
  4. Bradley P. B., Dhawan B. N., Wolstencroft J. H. Pharmacological properties of cholinoceptive neurones in the medulla and pons of the cat. J Physiol. 1966 Apr;183(3):658–674. doi: 10.1113/jphysiol.1966.sp007891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheney D. L., LeFevere H. F., Racagni G. Choline acetyltransferase activity and mass fragmentographic measurement of acetylcholine in specific nuclei and tracts of rat brain. Neuropharmacology. 1975 Nov;14(11):801–809. doi: 10.1016/0028-3908(75)90107-0. [DOI] [PubMed] [Google Scholar]
  6. Couch J. R., Jr Responses of neurons in the raphe nuclei to serotonin, norepinephrine and acetylcholine and their correlation with an excitatory synaptic input. Brain Res. 1970 Apr 1;19(1):137–150. doi: 10.1016/0006-8993(70)90243-x. [DOI] [PubMed] [Google Scholar]
  7. De Potter W. P., Chubb I. W., Put A., De Schaepdryver A. F. Facilitation of the release of noradrenaline and dopamine- -hydroxylase at low stimulation frequencies by -blocking agents. Arch Int Pharmacodyn Ther. 1971 Sep;193(1):191–197. [PubMed] [Google Scholar]
  8. FUXE K. EVIDENCE FOR THE EXISTENCE OF MONOAMINE NEURONS IN THE CENTRAL NERVOUS SYSTEM. IV. DISTRIBUTION OF MONOAMINE NERVE TERMINALS IN THE CENTRAL NERVOUS SYSTEM. Acta Physiol Scand Suppl. 1965:SUPPL 247–247:37+. [PubMed] [Google Scholar]
  9. Geyer M. A., Puerto A., Menkes D. B., Segal D. S., Mandell A. J. Behavioral studies following lesions of the mesolimbic and mesostriatal serotonergic pathways. Brain Res. 1976 Apr 23;106(2):257–269. doi: 10.1016/0006-8993(76)91024-6. [DOI] [PubMed] [Google Scholar]
  10. Iversen L. L., Salt P. J., Wilson H. A. Inhibition of catecholamine uptake in the isolated rat heart by haloalkylamines related to phenoxybenzamine. Br J Pharmacol. 1972 Dec;46(4):647–657. doi: 10.1111/j.1476-5381.1972.tb06890.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Key B. J. Electrocortical changes induced by perfusion of catecholamines into the brainstem reticular formation. Neuropharmacology. 1975 Jan;14(1):41–51. doi: 10.1016/0028-3908(75)90064-7. [DOI] [PubMed] [Google Scholar]
  12. Kostowski W., Giacalone E., Garattini S., Valzelli L. Electrical stimulation of midbrain raphe: biochemical, behavioral and bioelectrical effects. Eur J Pharmacol. 1969 Aug;7(2):170–175. doi: 10.1016/0014-2999(69)90006-5. [DOI] [PubMed] [Google Scholar]
  13. Kuhar M. J., Yamamura H. I. Light autoradiographic localisation of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist. Nature. 1975 Feb 13;253(5492):560–561. doi: 10.1038/253560a0. [DOI] [PubMed] [Google Scholar]
  14. Lewis P. R., Shute C. C. The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain. 1967 Sep;90(3):521–540. doi: 10.1093/brain/90.3.521. [DOI] [PubMed] [Google Scholar]
  15. Lish P. M., Weikel J. H., Dungan K. W. Pharmacological and toxicological properties of two new beta-adrenergic receptor antagonists. J Pharmacol Exp Ther. 1965 Aug;149(2):161–173. [PubMed] [Google Scholar]
  16. Lorens S. A., Guldberg H. C. Regional 5-hydroxytryptamine following selective midbrain raphe lesions in the rat. Brain Res. 1974 Sep 20;78(1):45–56. doi: 10.1016/0006-8993(74)90352-7. [DOI] [PubMed] [Google Scholar]
  17. MORAN N. C., PERKINS M. E. An evaluation of adrenergic blockade of the mammalian heart. J Pharmacol Exp Ther. 1961 Aug;133:192–201. [PubMed] [Google Scholar]
  18. Morgane P. J., Stern W. C. Relationship of sleep to neuroanatomical circuits, biochemistry, and behavior. Ann N Y Acad Sci. 1972 Aug 25;193:95–111. doi: 10.1111/j.1749-6632.1972.tb27827.x. [DOI] [PubMed] [Google Scholar]
  19. Nakamura S. Two types of inhibitory effects upon brain stem reticular neurons by low frequency stimulation of raphe nucleus in the rat. Brain Res. 1975 Jul 25;93(1):140–144. doi: 10.1016/0006-8993(75)90292-9. [DOI] [PubMed] [Google Scholar]
  20. Palkovits M., Jacobowitz D. M. Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J Comp Neurol. 1974 Sep 1;157(1):29–42. doi: 10.1002/cne.901570104. [DOI] [PubMed] [Google Scholar]
  21. Saavedra J. M., Grobecker H., Zivin J. Catecholamines in the raphe nuclei of the rat. Brain Res. 1976 Sep 17;114(2):337–345. doi: 10.1016/0006-8993(76)90677-6. [DOI] [PubMed] [Google Scholar]
  22. Srebro B., Lorens S. A. Behavioral effects of selective midbrain raphe lesions in the rat. Brain Res. 1975 May 23;89(2):303–325. doi: 10.1016/0006-8993(75)90721-0. [DOI] [PubMed] [Google Scholar]
  23. Vatner D. E., Lefkowitz R. J. (3H)-Propranolol binding sites in myocardial membranes: nonidentity with beta adrenergic receptors. Mol Pharmacol. 1974 May;10(3):450–456. [PubMed] [Google Scholar]
  24. Yamamura H. I., Kuhar M. J., Snyder S. H. In vivo identification of muscarinic cholinergic receptor binding in rat brain. Brain Res. 1974 Nov 8;80(1):170–176. doi: 10.1016/0006-8993(74)90738-0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES