Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1976 Nov;58(3):347–357.

Anaesthetics depress the sensitivity of cortical neurones to L-glutamate.

C D Richards, J C Smaje
PMCID: PMC1667593  PMID: 990590

Abstract

1 The effects of general anaesthetics on the responses of neurones to iontophoretically applied L-glutamate have been examined in slices of the guinea-pig olfactory cortex in vitro. 2 Concentrations of pentobarbitone, ether, methoxyflurance, trichloroethylene and alphaxalone that are known to depress synaptic transmission in the prepiriform cortex also depressed the sensitivity of prepiriform neurones to L-glutamate. 3 Halothane, in concentrations that depress synaptic transmission (less than 1%) did not alter sensitivity of neurones to glutamate. Higher concentrations (greater than 1% produced a dose-related depression of the glutamate sensitivity of neurones. 4 All four volatile anaesthetics tested caused some cells to alter their glutamate-evoked firing pattern to one in which the spike discharges were more closely grouped. Pentobarbitone and alphaxalone had no such effect. 5 If the sensitivity of the neurones to the endogenous excitatory transmitter is affected by anaesthetics in the same way as the glutamate-sensitivity, these results suggest that halothane depresses synaptic transmission by decreasing the amount of transmitter released from the nerve terminals, whereas the other anaesthetics depress the sensitivity of the post-synaptic membrane to the released transmitter.

Full text

PDF
347

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford H. F., Richards C. D. Specific release of endogenous glutamate from piriform cortex stimulated in vitro. Brain Res. 1976 Mar 19;105(1):168–172. doi: 10.1016/0006-8993(76)90933-1. [DOI] [PubMed] [Google Scholar]
  2. Catchlove R. F., Krnjević K., Maretić H. Similarity between effects of general anesthetics and dinitrophenol on cortical neurones. Can J Physiol Pharmacol. 1972 Nov;50(11):1111–1114. doi: 10.1139/y72-162. [DOI] [PubMed] [Google Scholar]
  3. Crawford J. M. Anaesthetic agents and the chemical sensitivity of cortical neurones. Neuropharmacology. 1970 Jan;9(1):31–46. doi: 10.1016/0028-3908(70)90045-6. [DOI] [PubMed] [Google Scholar]
  4. Crawford J. M., Curtis D. R. Pharmacological studies on feline Betz cells. J Physiol. 1966 Sep;186(1):121–138. doi: 10.1113/jphysiol.1966.sp008024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DEL CASTILLO J., KATZ B. On the localization of acetylcholine receptors. J Physiol. 1955 Apr 28;128(1):157–181. doi: 10.1113/jphysiol.1955.sp005297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galindo A. Effects of procaine, pentobarbital and halothane on synaptic transmission in the central nervous system. J Pharmacol Exp Ther. 1969 Oct;169(2):185–195. [PubMed] [Google Scholar]
  7. Godfraind J. M., Krnjević K., Pumain R. Unexpected features of the action of dinitrophenol on cortical neurones. Nature. 1970 Nov 7;228(5271):562–564. doi: 10.1038/228562a0. [DOI] [PubMed] [Google Scholar]
  8. Goodman S. J., Mann P. E. Reticular and thalamic multiple unit activity during wakefulness, sleep and anesthesia. Exp Neurol. 1967 Sep;19(1):11–24. doi: 10.1016/0014-4886(67)90003-9. [DOI] [PubMed] [Google Scholar]
  9. Herz A., Zieglgänsberger W., Färber G. Microelectrophoretic studies concerning the spread of glutamic acid and GABA in brain tissue. Exp Brain Res. 1969;9(3):221–235. doi: 10.1007/BF00234456. [DOI] [PubMed] [Google Scholar]
  10. Johnson E. S., Roberts M. H., Straughan D. W. The responses of cortical neurones to monoamines under differing anaesthetic conditions. J Physiol. 1969 Aug;203(2):261–280. doi: 10.1113/jphysiol.1969.sp008863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kelly J. S., Krnjević K., Somjen G. Divalent cations and electrical properties of cortical cells. J Neurobiol. 1969;1(2):197–208. doi: 10.1002/neu.480010207. [DOI] [PubMed] [Google Scholar]
  12. Krnjević K., Pumain R., Renaud L. The mechanism of excitation by acetylcholine in the cerebral cortex. J Physiol. 1971 May;215(1):247–268. doi: 10.1113/jphysiol.1971.sp009467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Legge K. F., Randic M., Straughan D. W. The pharmacology of neurones in the pyriform cortex. Br J Pharmacol Chemother. 1966 Jan;26(1):87–107. doi: 10.1111/j.1476-5381.1966.tb01814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Price J. L. An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J Comp Neurol. 1973 Jul 1;150(1):87–108. doi: 10.1002/cne.901500105. [DOI] [PubMed] [Google Scholar]
  15. Ransom B. R., Barker J. L. Pentobarbital modulates transmitter effects on mouse spinal neurones grown in tissue culture. Nature. 1975 Apr 24;254(5502):703–705. doi: 10.1038/254703a0. [DOI] [PubMed] [Google Scholar]
  16. Richards C. D., Hesketh T. R. Implications for theories of anaesthesia of antagonism between anaesthetic and non-anaesthetic steroids. Nature. 1975 Jul 17;256(5514):179–182. doi: 10.1038/256179a0. [DOI] [PubMed] [Google Scholar]
  17. Richards C. D. On the mechanism of barbiturate anaesthesia. J Physiol. 1972 Dec;227(3):749–767. doi: 10.1113/jphysiol.1972.sp010057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Richards C. D. On the mechanism of halothane anaesthesia. J Physiol. 1973 Sep;233(2):439–456. doi: 10.1113/jphysiol.1973.sp010316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Richards C. D., Russell W. J., Smaje J. C. The action of ether and methoxyflurane on synaptic transmission in isolated preparations of the mammalian cortex. J Physiol. 1975 Jun;248(1):121–142. doi: 10.1113/jphysiol.1975.sp010965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Richards C. D., Sercombe R. Calcium, magnesium and the electrical activity of guinea-pig olfactory coex in vitro. J Physiol. 1970 Dec;211(3):571–584. doi: 10.1113/jphysiol.1970.sp009294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Richards C. D., Sercombe R. Electrical activity observed in guinea-pig olfactory cortex maintained in vitro. J Physiol. 1968 Aug;197(3):667–683. doi: 10.1113/jphysiol.1968.sp008581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Richards C. D., Smaje J. C. Proceedings: The actions of halothane and pentobarbitone on the sensitivity of neurones in the guinea-pig prepiriform cortex to iontophoretically applied L-glutamate. J Physiol. 1974 Jun;239(2):103P–105P. [PubMed] [Google Scholar]
  23. Robson J. G. The effects of anesthetic drugs on cortical units. Anesthesiology. 1967 Jan-Feb;28(1):144–154. doi: 10.1097/00000542-196701000-00016. [DOI] [PubMed] [Google Scholar]
  24. Rubin R. P. The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Rev. 1970 Sep;22(3):389–428. [PubMed] [Google Scholar]
  25. SALMOIRAGHI G. C., STEINER F. A. Acetylcholine sensitivity of cat's medullary neurons. J Neurophysiol. 1963 Jul;26:581–597. doi: 10.1152/jn.1963.26.4.581. [DOI] [PubMed] [Google Scholar]
  26. Smaje J. C. General anaesthetics and the acetylcholine-sensitivity of cortical neurons. Br J Pharmacol. 1976 Nov;58(3):359–366. doi: 10.1111/j.1476-5381.1976.tb07712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamamoto C., McIlwain H. Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J Neurochem. 1966 Dec;13(12):1333–1343. doi: 10.1111/j.1471-4159.1966.tb04296.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES