Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1978 Jan;62(1):125–130. doi: 10.1111/j.1476-5381.1978.tb07014.x

Comparison of the vasodepressor effects of prostacyclin and 6-oxo-prostaglandin F1alpha with those of prostaglandin E2 in rats and rabbits.

J M Armstrong, N Lattimer, S Moncada, J R Vane
PMCID: PMC1667780  PMID: 339981

Abstract

1 Vasodepressor effects of prostacyclin (5z-5,6-didehydro-9-deoxy-6,9alpha-epoxyprostaglandin F1) and its decomposition product 6-oxo-prostaglandin F1alpha (6-oxo-PGF1alpha) have been compared with those of prostaglandin E2 (PGE2) in anaesthetized rats and rabbits. 2 In rats intravenous prostacyclin produced hypotension and was 4--8 times more potent than PGE2 and about 128 times more potent than 6-oxo-PGF1alpha. 3 In rabbits also, intravenous prostacyclin (less than 2 microgram/kg) produced hypotension and was twice as active as PGE2 and approximately 250 times more active than 6-oxo-PGF1alpha. 4 In rats and rabbits vasodepressor responses induced by prostacyclin were similar in magnitude after either intravenous or intra-aortic administration. 5 Thus, in both species prostacyclin resembles PGE2 in producing vasodepression but does not lose activity on passage through the lungs. The results emphasize the need to consider prostacyclin in addition to PGE2 as a major determinant influencing blood pressure.

Full text

PDF
125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong J. M., Boura A. L., Hamberg M., Samuelsson B. A comparison of the vasodepressor effects of the cyclic effects of the cyclic endoperoxides PGG, and PGH2 with those of PGD2 and PGE2 in hypertensive and normotensive rats. Eur J Pharmacol. 1976 Oct;39(2):251–258. doi: 10.1016/0014-2999(76)90133-3. [DOI] [PubMed] [Google Scholar]
  2. Bunting S., Gryglewski R., Moncada S., Vane J. R. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. Prostaglandins. 1976 Dec;12(6):897–913. doi: 10.1016/0090-6980(76)90125-8. [DOI] [PubMed] [Google Scholar]
  3. Cohen M., Sztokalo J., Hinsch E. The antihypertensive action of arachidonic acid in the spontaneous hypertensive rat and its antagonism by anti-inflammatory agents. Life Sci. 1973 Aug 16;13(4):317–325. doi: 10.1016/0024-3205(73)90223-3. [DOI] [PubMed] [Google Scholar]
  4. Cottee F., Flower R. J., Moncada S., Salmon J. A., Vane J. R. Synthesis of 6-keto-PGF1alpha by ram seminal vesicle microsomes. Prostaglandins. 1977 Sep;14(3):413–423. doi: 10.1016/0090-6980(77)90257-x. [DOI] [PubMed] [Google Scholar]
  5. Dusting G. J., Moncada S., Vane J. R. Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachindonic acid. Prostaglandins. 1977 Jan;13(1):3–15. doi: 10.1016/0090-6980(77)90037-5. [DOI] [PubMed] [Google Scholar]
  6. Ferreira S. H., Vane J. R. Prostaglandins: their disappearance from and release into the circulation. Nature. 1967 Dec 2;216(5118):868–873. doi: 10.1038/216868a0. [DOI] [PubMed] [Google Scholar]
  7. Horton E. W. Hypotheses on physiological roles of prostaglandins. Physiol Rev. 1969 Jan;49(1):122–161. doi: 10.1152/physrev.1969.49.1.122. [DOI] [PubMed] [Google Scholar]
  8. Moncada S., Gryglewski R., Bunting S., Vane J. R. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976 Oct 21;263(5579):663–665. doi: 10.1038/263663a0. [DOI] [PubMed] [Google Scholar]
  9. Moncada S., Higgs E. A., Vane J. R. Human arterial and venous tissues generate prostacyclin (prostaglandin x), a potent inhibitor of platelet aggregation. Lancet. 1977 Jan 1;1(8001):18–20. doi: 10.1016/s0140-6736(77)91655-5. [DOI] [PubMed] [Google Scholar]
  10. Moncada S., Needleman P., Bunting S., Vane J. R. Prostaglandin endoperoxide and thromboxane generating systems and their selective inhibition. Prostaglandins. 1976 Sep;12(3):323–335. doi: 10.1016/0090-6980(76)90014-9. [DOI] [PubMed] [Google Scholar]
  11. Papanicolaou N., Meyer P. Inactivation of prostaglandins E 2 and A 2 on their single passage through the pulmonary vascular bed in anaesthetized rats. Rev Can Biol. 1972 Dec;31(4):313–316. [PubMed] [Google Scholar]
  12. Raz A., Isakson P. C., Minkes M. S., Needleman P. Characterization of a novel metabolic pathway of arachidonate in coronary arteries which generates a potent endogenous coronary vasodilator. J Biol Chem. 1977 Feb 10;252(3):1123–1126. [PubMed] [Google Scholar]
  13. Strand J. C., Miller M. P., McGiff J. C. Biological activity of the methyl esters of prostaglandin E2 and its (15S)-15-methyl analogue. Eur J Pharmacol. 1974 May;26(2):151–157. doi: 10.1016/0014-2999(74)90221-0. [DOI] [PubMed] [Google Scholar]
  14. Tuvemo T., Strandberg K., Hamberg M., Samuelsson B. Maintenance of the tone of the human umbilical artery by prostaglandin and thromboxane formation. Adv Prostaglandin Thromboxane Res. 1976;1:425–428. [PubMed] [Google Scholar]
  15. Vane J. R., McGiff J. C. Possible contributions of endogenous prostaglandins to the control of blood pressure. Circ Res. 1975 Jun;36(6 Suppl 1):68–75. doi: 10.1161/01.res.36.6.68. [DOI] [PubMed] [Google Scholar]
  16. Whittaker N., Bunting S., Salmon J., Moncada S., Vane J. R., Johnson R. A., Morton D. R., Kinner J. H., Gorman R. R., McGuire J. C. The chemical structure of prostaglandin X (prostacyclin). Prostaglandins. 1976 Dec;12(6):915–928. doi: 10.1016/0090-6980(76)90126-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES