Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1977 Mar;59(3):419–424. doi: 10.1111/j.1476-5381.1977.tb08395.x

Effect of neuroleptics and other drugs on monoamine uptake by membranes of adrenal chromaffin granules.

A Pletscher
PMCID: PMC1667939  PMID: 584682

Abstract

1 The effects have been investigated of various reserpine-like, neuroleptic, antidepressant and other compounds on the adenosine-5'-triphosphate (ATP)-dependent uptake of noradrenaline (NA) (reserpine-sensitive) and tryptamine (reserpine-resistant) by membranes of isolated chromaffin granules of bovine adrenal medulla. 2 Reserpine and Ro 4-1284 (2-hydroxy-2-ethyl-3-isobutyl-9,10-dimethoxy-hexahydro-11bH-benzo(a)quinolizine) as well as neuroleptics (e.g. chlorpromazine and haloperidol) inhibited the NA uptake, but the reserpine-like drugs were more potent. In contrast, Ro 4-1284 showed a considerably weaker effect thatn the neuroleptics in interfering with tryptamine uptake. Chlorpromazine had about the same potency in inhibiting NA and tryptamine uptake, whereas the action of haloperidol was more pronounced on the uptake of NA than of tryptamine. 3 The relative potencies of neuroleptic drugs in inhibiting NA uptake by granule membranes in vitro corresponded only partly to their relative potencies in enhancing dopamine turnover in vivo. 4 The inhibition of NA uptake by chloropromazine and Ro 4-1284 appeared to be of the noncompetitive type. 5 Chlorpromazine did not influence the decrease in ATP induced by granule membranes in the incubation medium. 6 Other basic, but not acidic compounds also inhibited NA uptake by granule membranes; their potency was of the order of that of chlorpromazine (antidepressants) or weaker (e.g. benzodiazepines). 7 In conclusion, the mechanism of action of neuroleptics probably differs from that of reserpine-like drugs in the inhibition of monoamine uptake by membranes of catecholamine storage organelles. While interference with the granular storage of dopamine at the granule membrane level may contribute to the in vivo action of neuroleptics (e.g. in enhancing dopamine turnover), additional effects of these drugs must be involved in vivo, e.g. blockade of pre- and postsynaptic dopamine receptors.

Full text

PDF
419

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostini B., Taugner G. The membrane of the catecholamine storage vesicles of the adrenal medulla. Correlation of ultrastructure with biochemical properties. Histochemie. 1973;33(3):255–272. doi: 10.1007/BF00274237. [DOI] [PubMed] [Google Scholar]
  2. Carlsson V. A. Der Beitrag der Arzneimittelforschung zum Verständnis der Schizophrenie. Wien Med Wochenschr. 1975 May 23;125(21):308–317. [PubMed] [Google Scholar]
  3. Creese I., Burt D. R., Snyder S. H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976 Apr 30;192(4238):481–483. doi: 10.1126/science.3854. [DOI] [PubMed] [Google Scholar]
  4. Da Prada M., Obrist R., Pletscher A. Discrimination of monoamine uptake by membranes of adrenal chromaffin granules. Br J Pharmacol. 1975 Feb;53(2):257–265. doi: 10.1111/j.1476-5381.1975.tb07357.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Da Prada M., Pletscher A. Accumulation of basic drugs in 5-hydroxytryptamine storage organelles of rabbit blood platelets. Eur J Pharmacol. 1975 Jun-Jul;32(02):179–185. doi: 10.1016/0014-2999(75)90281-2. [DOI] [PubMed] [Google Scholar]
  6. Da Prada M., Pletscher A. On the mechanism of chlorpromazine-induced changes of cerebral homovanillic acid levels. J Pharm Pharmacol. 1966 Sep;18(9):628–630. doi: 10.1111/j.2042-7158.1966.tb07948.x. [DOI] [PubMed] [Google Scholar]
  7. Halaris A. E., Belendiuk K. T., Freedman D. X. Antidepressant drugs affect dopamine uptake. Biochem Pharmacol. 1975 Oct 15;24(20):1896–1897. doi: 10.1016/0006-2952(75)90412-8. [DOI] [PubMed] [Google Scholar]
  8. Helle K. B. Biochemical studies of the chromaffin granule. I. Distribution of chromagranin A and dopamine- -hydroxylase activity in the membrane and water-soluble granule fractions. Biochim Biophys Acta. 1971 Aug 6;245(1):80–93. doi: 10.1016/0005-2728(71)90010-7. [DOI] [PubMed] [Google Scholar]
  9. Holmsen H., Holmsen I., Bernhardsen A. Microdetermination of adenosine diphosphate and adenosine triphosphate in plasma with firefly luciferase system. Anal Biochem. 1966 Dec;17(3):456–473. doi: 10.1016/0003-2697(66)90181-3. [DOI] [PubMed] [Google Scholar]
  10. Iversen L. L. Dopamine receptors in the brain. Science. 1975 Jun 13;188(4193):1084–1089. doi: 10.1126/science.2976. [DOI] [PubMed] [Google Scholar]
  11. Iversen L. L., Rogawski M. A., Miller R. J. Comparison of the effects of neuroleptic drugs on pre- and postsynaptic dopaminergic mechanisms in the rat striatum. Mol Pharmacol. 1976 Mar;12(2):251–262. [PubMed] [Google Scholar]
  12. Kebabian J. W., Petzold G. L., Greengard P. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the "dopamine receptor". Proc Natl Acad Sci U S A. 1972 Aug;69(8):2145–2149. doi: 10.1073/pnas.69.8.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keller H. H., Schaffner R., Haefely W. Interaction of benzodiazepines with neuroleptics at central dopamine neurons. Naunyn Schmiedebergs Arch Pharmacol. 1976 Jul;294(1):1–7. doi: 10.1007/BF00692778. [DOI] [PubMed] [Google Scholar]
  14. Kirshner N. Function and organization of chromaffin vesicle. Life Sci. 1974 Apr 1;14(7):1153–1167. doi: 10.1016/0024-3205(74)90424-x. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lippmann W., Pugsley T., Merker J. Effect of butaclamol and its enantiomers upon striatal homovanillic acid and adenyl cyclase of olfactory tubercle in rats. Life Sci. 1975 Jan 15;16(2):213–224. doi: 10.1016/0024-3205(75)90019-3. [DOI] [PubMed] [Google Scholar]
  17. Prada M. D., Pletscher A. Storage of exogenous monoamines and reserpine in 5-hydroxytryptamine organelles of blood platelets. Eur J Pharmacol. 1969 Jul;7(1):45–48. doi: 10.1016/0014-2999(69)90161-7. [DOI] [PubMed] [Google Scholar]
  18. Seeman P., Lee T. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science. 1975 Jun 20;188(4194):1217–1219. doi: 10.1126/science.1145194. [DOI] [PubMed] [Google Scholar]
  19. Seeman P., Lee T. The dopamine-releasing actions of neuroleptics and ethanol. J Pharmacol Exp Ther. 1974 Jul;190(1):131–140. [PubMed] [Google Scholar]
  20. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  21. Taugner G., Hasselbach W. Uber den Mechanismus der Catecholamin-Speicherung in den "chromaffinen Granula" des Nebennierenmarks. Naunyn Schmiedebergs Arch Pharmakol Exp Pathol. 1966;255(3):266–286. [PubMed] [Google Scholar]
  22. Taugner G. The membrane of catecholamine storage vesicles of adrenal medulla. Catecholamines fluxes and ATPase activity. Naunyn Schmiedebergs Arch Pharmakol. 1971;270(4):392–406. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES