Abstract
1 The possibility of concanavalin A (Con A) blocking the development of desensitization of nicotinic receptors of the cat adrenal gland has been investigated. 2 During perfusion of the adrenal gland with Krebs-bicarbonate solution containing acetylcholine (ACh), the rate of catecholamine (CA) secretion was very high in the first 2 min; thereafter, as perfusion with ACh was continued the output fell, to reach about 20% of the initial value in 10 minutes. When the adrenal gland was pretreated with Con A, the subsequent desensitization of release during continued infusion of ACh was prevented. 3 When the adrenal gland was perfused with high K+ solution, there was always a large initial secretion of CA, and as perfusion with high K+ continued the output fell, to reach about 15% of the initial rate in 10 minutes. Con A did not affect the rate of CA secretion induced by high K+. 4 It is tentatively suggested that Con A blocks the desensitization of CA secretion evoked by ACh by interaction with the glycoprotein moiety of the nicotinic receptor of adrenal chromaffin cells.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANTON A. H., SAYRE D. F. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther. 1962 Dec;138:360–375. [PubMed] [Google Scholar]
- DOUGLAS W. W., RUBIN R. P. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol. 1961 Nov;159:40–57. doi: 10.1113/jphysiol.1961.sp006791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon W. R., Garcia A. G., Kirpekar S. M. Release of catecholamines and dopamine beta-hydroxylase from the perfused adrenal gland of the cat. J Physiol. 1975 Jan;244(3):805–824. doi: 10.1113/jphysiol.1975.sp010827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas W. W., Poisner A. M. Preferential release of adrenaline from the adrenal medulla by muscarine and pilocarpine. Nature. 1965 Dec 11;208(5015):1102–1103. doi: 10.1038/2081102a0. [DOI] [PubMed] [Google Scholar]
- Hubbard J. I. Microphysiology of vertebrate neuromuscular transmission. Physiol Rev. 1973 Jul;53(3):674–723. doi: 10.1152/physrev.1973.53.3.674. [DOI] [PubMed] [Google Scholar]
- KATZ B., THESLEFF S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957 Aug 29;138(1):63–80. doi: 10.1113/jphysiol.1957.sp005838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathers D. A., Usherwood P. N. Concanavalin A blocks desensitisation of glutamate receptors on insect muscle fibres. Nature. 1976 Feb 5;259(5542):409–411. doi: 10.1038/259409a0. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
- Rang H. P., Ritter J. M. On the mechanism of desensitization at cholinergic receptors. Mol Pharmacol. 1970 Jul;6(4):357–382. [PubMed] [Google Scholar]
- Rubin R. P., Miele E. A study of the differential secretion of epinephrine and norepinephrine from the perfused cat adrenal gland. J Pharmacol Exp Ther. 1968 Nov;164(1):115–121. [PubMed] [Google Scholar]
- VOGT M. The secretion of the denervated adrenal medulla of the cat. Br J Pharmacol Chemother. 1952 Jun;7(2):325–330. doi: 10.1111/j.1476-5381.1952.tb01329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson S. P., Kirshner N. The acetylcholine receptor of the adrenal medulla. J Neurochem. 1977 Apr;28(4):687–695. doi: 10.1111/j.1471-4159.1977.tb10615.x. [DOI] [PubMed] [Google Scholar]
