Abstract
1. Neural crest material from neurula stage Xenopus embryos was tissue cultured as small aggregates of cells or a single cell suspension. Isolated pigment cells differentiated after 2 days in culture. 2. Melatonin (10(-15) to 10(-13) M) induced pigment granule condensation; it was 10,000 times more effective than any other compound tested. 3. Tests with appropriate agents showed the pigment cells to have beta-adrenoceptors and 5-hydroxytryptamine receptors; these sites could be blocked without affecting the response to melatonin. Phentolamine blocked the effect of melatonin. 4. Removal of Na+ or Ca2+ from the bathing medium inhibited melatonin-induced pigment granule condensation; 10 mM K+ induced pigment granule condensation. D600, Mn2+ and La3+, which inhibit Ca2+ entry, blocked the effect of melatonin. 5. Cyclic GMP induced pigment condensation and cyclic AMP pigment dispersion (10(-2) to 10(-4) M). 6. It is suggested that the action of melatonin is accompanied by depolarization and the entry of calcium ions. 7. Pigment cells in tissue culture could provide a useful bioassay method for melatonin.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arendt J., Paunier L., Sizonenko P. C. Melatonin radioimmunoassay. J Clin Endocrinol Metab. 1975 Feb;40(2):347–350. doi: 10.1210/jcem-40-2-347. [DOI] [PubMed] [Google Scholar]
- Cardinali D. P. Melatonin and the endocrine role of the pineal organ. Curr Top Exp Endocrinol. 1974;2:107–128. doi: 10.1016/b978-0-12-153202-4.50010-8. [DOI] [PubMed] [Google Scholar]
- Cardinali D. P., Nagle C. A., Rosner J. M. Gonadal steroids as modulators of the function of the pineal gland. Gen Comp Endocrinol. 1975 May;26(1):50–58. doi: 10.1016/0016-6480(75)90214-2. [DOI] [PubMed] [Google Scholar]
- Das P. K., Parratt J. R. Myocardial and haemodynamic effects of phentolamine. Br J Pharmacol. 1971 Mar;41(3):437–444. doi: 10.1111/j.1476-5381.1971.tb08041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heward C. B., Hadley M. E. Structure-activity relationships of melatonin and related indoleamines. Life Sci. 1975 Oct 10;17(7):1167–1177. doi: 10.1016/0024-3205(75)90340-9. [DOI] [PubMed] [Google Scholar]
- LERNER A. B., WRIGHT M. R. In vitro frog skin assay for agents that darken and lighten melanocytes. Methods Biochem Anal. 1960;8:295–307. doi: 10.1002/9780470110249.ch7. [DOI] [PubMed] [Google Scholar]
- Lyerla T. A., Novales R. R. Effect of cyclic AMP and cytochalasin B on tissue cultured melanophores of Xenopus laevis. J Cell Physiol. 1972 Oct;80(2):243–251. doi: 10.1002/jcp.1040800211. [DOI] [PubMed] [Google Scholar]
- Martin A. R., Snell R. S. A note on transmembrane potential in dermal melanophores of the frog and movement of melanin granules. J Physiol. 1968 Apr;195(3):755–759. doi: 10.1113/jphysiol.1968.sp008487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minneman K. P., Wurtman R. J. Effects of pineal compounds on mammals. Life Sci. 1975 Oct 15;17(8):1189–1199. doi: 10.1016/0024-3205(75)90127-7. [DOI] [PubMed] [Google Scholar]
- Ralph C. L., Lynch H. J. A quantitative melatonin bioassay. Gen Comp Endocrinol. 1970 Oct;15(2):334–338. doi: 10.1016/0016-6480(70)90083-3. [DOI] [PubMed] [Google Scholar]