Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1978 Sep;64(1):99–108. doi: 10.1111/j.1476-5381.1978.tb08646.x

A new bioassay for glucagon

G Gagnon, D Regoli, F Rioux
PMCID: PMC1668257  PMID: 698487

Abstract

1 The relaxant action of glucagon has been studied in strips of rabbit renal arteries partially contracted by a low concentration (1 ng/ml) of noradrenaline.

2 The preparation was relaxed in a dose-dependent manner by concentrations of glucagon varying between 25 ng/ml and 420 ng/ml.

3 The relaxant effect of glucagon (0.1 μg/ml ≃ ED60) on this preparation was not affected by propranolol (5.0 μg/ml), cimetidine (10 μg/ml), diphenhydramine (10 μg/ml), indomethacin (5.0 μg/ml), phentolamine (1.2 μg/ml), atropine (10 μg/ml) and 8-Leu-ATII (1.0 μg/ml) but was slightly potentiated by Des-Arg9 Leu-OMe8-Bk (25 μg/ml) and indomethacin (50 μg/ml).

4 The dose-response curve to glucagon remained parallel in the presence of papaverine (2.5 μg/ml) but was shifted to the left by a factor of 2.5 to 2.8. Theophylline (250 μg/ml) also potentiated the vascular relaxation induced by glucagon.

5 Insulin (10 μg/ml) did not influence the relaxant effect of glucagon.

6 The removal of the N-terminal amino acid (His) of glucagon reduced by 89% the biological activity of this fragment on the vascular preparation. The removal of the C-terminal amino acids Met-27, Asn-28 and Thr-29 of glucagon resulted in a fragment which was inactive either as an agonist or as an antagonist when tested at concentrations as high as 925 ng/ml.

7 It is concluded that the relaxation of partially contracted strips of rabbit renal arteries by glucagon constitutes a simple, sensitive, relatively specific and reliable bioassay which may be useful for the determination of glucagon in biological materials and for structure-activity relationship studies with this hormone.

Full text

PDF
99

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMIN A. H., CRAWFORD T. B., GADDUM J. H. The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J Physiol. 1954 Dec 10;126(3):596–618. doi: 10.1113/jphysiol.1954.sp005229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alford F. P., Bloodm S. R., Nabarro J. D. Glucagon levels in normal and diabetic subjects: use of a specific immunoabsorbent for glucagon radioimmunoassay. Diabetologia. 1977 Jan;13(1):1–6. doi: 10.1007/BF00996319. [DOI] [PubMed] [Google Scholar]
  3. Birnbaumer L., Rodbell M. Adenyl cyclase in fat cells. II. Hormone receptors. J Biol Chem. 1969 Jul 10;244(13):3477–3482. [PubMed] [Google Scholar]
  4. Bromer W. W., Boucher M. E., Patterson J. M. Glucagon structure and function. II. Increased activity of iodoglucagon. Biochem Biophys Res Commun. 1973 Jul 2;53(1):134–139. doi: 10.1016/0006-291x(73)91411-3. [DOI] [PubMed] [Google Scholar]
  5. Bromer W. W. Studies with glucagon analogs. Metabolism. 1976 Nov;25(11 Suppl 1):1315–1316. doi: 10.1016/s0026-0495(76)80130-8. [DOI] [PubMed] [Google Scholar]
  6. Böttger I., Schlein E. M., Faloona G. R., Knochel J. P., Unger R. H. The effect of exercise on glucagon secretion. J Clin Endocrinol Metab. 1972 Jul;35(1):117–125. doi: 10.1210/jcem-35-1-117. [DOI] [PubMed] [Google Scholar]
  7. Entman M. L., Levey G. S., Epstein S. E. Mechanism of action of epinephrine and glucagon on the canine heart. Evidence for increase in sarcotubular calcium stores mediated by cyclic 3',5'-AMP. Circ Res. 1969 Oct;25(4):429–438. doi: 10.1161/01.res.25.4.429. [DOI] [PubMed] [Google Scholar]
  8. FURCHGOTT R. F., BHADRAKOM S. Reactions of strips of rabbit aorta to epinephrine, isopropylarterenol, sodium nitrite and other drugs. J Pharmacol Exp Ther. 1953 Jun;108(2):129–143. [PubMed] [Google Scholar]
  9. Faloona G. R., Unger R. H. Biological and immunological activity of pancreatic glucagon and enteric glucagon-like immunoreactivity. Isr J Med Sci. 1974 Oct;10(10):1324–1331. [PubMed] [Google Scholar]
  10. Gilore N. J., Vane J. R. A sensitive and specific assay for vasopressin in the circulating blood. Br J Pharmacol. 1970 Apr;38(4):633–652. doi: 10.1111/j.1476-5381.1970.tb09873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glick G., Parmley W. W., Wechsler A. S., Sonnenblick E. H. Glucagon. Its enhancement of cardiac performance in the cat and dog and persistence of its inotropic action despite beta-receptor blockade with propranolol. Circ Res. 1968 Jun;22(6):789–799. doi: 10.1161/01.res.22.6.789. [DOI] [PubMed] [Google Scholar]
  12. HORTON E. W. Human urinary kinin excretion. Br J Pharmacol Chemother. 1959 Mar;14(1):125–132. doi: 10.1111/j.1476-5381.1959.tb00938.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heding L. G., Frandsen E. K., Jacobsen H. Structure-function relationship: immunologic. Metabolism. 1976 Nov;25(11 Suppl 1):1327–1329. doi: 10.1016/s0026-0495(76)80134-5. [DOI] [PubMed] [Google Scholar]
  14. Hruby V. J., Wright D. E., Lin M. C., Rodbell M. Semisynthetic glucagon derivatives for structure-function studies. Metabolism. 1976 Nov;25(11 Suppl 1):1323–1325. doi: 10.1016/s0026-0495(76)80133-3. [DOI] [PubMed] [Google Scholar]
  15. Jaspan J. B., Rubenstein A. H. Circulating glucagon. Plasma profiles and metabolism in health and disease. Diabetes. 1977 Sep;26(9):887–904. doi: 10.2337/diab.26.9.887. [DOI] [PubMed] [Google Scholar]
  16. Levey G. S., Epstein S. E. Activation of adenyl cyclase by glucagon in cat and human heart. Circ Res. 1969 Feb;24(2):151–156. doi: 10.1161/01.res.24.2.151. [DOI] [PubMed] [Google Scholar]
  17. Lin M. C., Wright D. E., Hruby V. J., Rodbell M. Structure-function relationships in glucagon: properties of highly purified des-His-1-, monoiodo-, and (des-Asn-28, Thr-29)(homoserine lactone-27)-glucagon. Biochemistry. 1975 Apr 22;14(8):1559–1563. doi: 10.1021/bi00679a002. [DOI] [PubMed] [Google Scholar]
  18. Lucchesi B. R. Cardiac actions of glucagon. Circ Res. 1968 Jun;22(6):777–787. doi: 10.1161/01.res.22.6.777. [DOI] [PubMed] [Google Scholar]
  19. MAKMAN M. H., SUTHERLAND E. W., Jr USE OF LIVER ADENYL CYCLASE FOR ASSAY OF GLUCAGON IN HUMAN GASTRO-INTESTINAL TRACT AND PANCREAS. Endocrinology. 1964 Jul;75:127–134. doi: 10.1210/endo-75-1-127. [DOI] [PubMed] [Google Scholar]
  20. MANN M., WEST G. B. The nature of hepatic and splenic sympathin. Br J Pharmacol Chemother. 1950 Jun;5(2):173–177. doi: 10.1111/j.1476-5381.1950.tb01004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Olsen U. B. Prostaglandin mediated natriuresis during glucagon infusion in dogs. Acta Endocrinol (Copenh) 1977 Feb;84(2):429–438. doi: 10.1530/acta.0.0840429. [DOI] [PubMed] [Google Scholar]
  22. Park W. K., Choi C., Rioux F., Regoli D. Synthesis of peptides with the solid phase method. II. Octapeptide analogues of angiotensin II. Can J Biochem. 1974 Feb;52(2):113–119. doi: 10.1139/o74-018. [DOI] [PubMed] [Google Scholar]
  23. REGOLI D., VANE J. R. A SENSITIVE METHOD FOR THE ASSAY OF ANGIOTENSIN. Br J Pharmacol Chemother. 1964 Oct;23:351–359. doi: 10.1111/j.1476-5381.1964.tb01591.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Regoli D., Barabé J., Park W. K. Receptors for bradykinin in rabbit aortae. Can J Physiol Pharmacol. 1977 Aug;55(4):855–867. doi: 10.1139/y77-115. [DOI] [PubMed] [Google Scholar]
  25. Regoli D., Park W. K., Rioux F. Pharmacology of angiotensin. Pharmacol Rev. 1974 Jun;26(2):69–123. [PubMed] [Google Scholar]
  26. Richardson P. D., Withrington P. G. The inhibition by glucagon of the vasoconstrictor actions of noradrenaline, angiotensin and vasopressin on the hepatic arterial vascular bed of the dog. Br J Pharmacol. 1976 May;57(1):93–102. doi: 10.1111/j.1476-5381.1976.tb07659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rocha D. M., Santeusanio F., Faloona G. R., Unger R. H. Abnormal pancreatic alpha-cell function in bacterial infections. N Engl J Med. 1973 Apr 5;288(14):700–703. doi: 10.1056/NEJM197304052881402. [DOI] [PubMed] [Google Scholar]
  28. Rodbell M., Birnbaumer L., Pohl S. L., Sundby F. The reaction of glucagon with its receptor: evidence for discrete regions of activity and binding in the glucagon molecule. Proc Natl Acad Sci U S A. 1971 May;68(5):909–913. doi: 10.1073/pnas.68.5.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rodbell M., Krans H. M., Pohl S. L., Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. 3. Binding of glucagon: method of assay and specificity. J Biol Chem. 1971 Mar 25;246(6):1861–1871. [PubMed] [Google Scholar]
  30. Ross G. Regional circulatory effects of pancreatic glucagon. Br J Pharmacol. 1970 Apr;38(4):735–742. doi: 10.1111/j.1476-5381.1970.tb09882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stowe N. T., Hook J. B. Role of alterations in renal hemodynamics in the natriuretic action of glucagon. Arch Int Pharmacodyn Ther. 1970 Jan;183(1):65–74. [PubMed] [Google Scholar]
  32. Triner L., Nahas G. G., Vulliemoz Y., Overweg N. T., Verosky M., Habif D. V., Ngai S. H. Cyclic AMP and smooth muscle function. Ann N Y Acad Sci. 1971 Dec 30;185:458–476. doi: 10.1111/j.1749-6632.1971.tb45273.x. [DOI] [PubMed] [Google Scholar]
  33. UNGER R. H., EISENTRAUT A. M., McCALL M. S., MADISON L. L. Glucagon antibodies and an immunoassay for glucagon. J Clin Invest. 1961 Jul;40:1280–1289. doi: 10.1172/JCI104357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. UNGER R. H., EISENTRAUT A. M., McCALL M. S., MADISON L. L. Measurements of endogenous glucagon in plasma and the influence of blood glucose concentration upon its secretion. J Clin Invest. 1962 Apr;41:682–689. doi: 10.1172/JCI104525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ueda J., Nakanishi H., Miyazaki M., Abe Y. Effects of glucagon on the renal hemodynamics of dogs. Eur J Pharmacol. 1977 Jan 21;41(2):209–212. doi: 10.1016/0014-2999(77)90210-2. [DOI] [PubMed] [Google Scholar]
  36. VANE J. R. A sensitive method for the assay of 5-hydroxytryptamine. Br J Pharmacol Chemother. 1957 Sep;12(3):344–349. doi: 10.1111/j.1476-5381.1957.tb00146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. VUYLSTEKE C. A., DE DUVE C. The assay of glucagon on isolated liver slices. Arch Int Pharmacodyn Ther. 1957 Sep 1;111(4):437–469. [PubMed] [Google Scholar]
  38. Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
  39. Walter R., Rudinger J., Schwartz I. L. Chemistry and structure-activity relations of the antidiuretic hormones. Am J Med. 1967 May;42(5):653–677. doi: 10.1016/0002-9343(67)90087-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES