Abstract
1 Fluorescence histochemical localization of quinacrine (which binds to adenosine 5′-triphosphate (ATP)) revealed nerve fibres running singly and in bundles in both rat and rabbit anococcygeus muscle. Single neurone cell bodies and ganglia containing between 2 and 50 cells were also observed.
2 Catecholamine fluorescence studies revealed a dense adrenergic ground plexus, but no adrenergic ganglion cells were detected. No acetylcholinesterase-positive nerve fibres or ganglion cells were seen in the rat.
3 When the tone was raised with guanethidine, a relaxation in response to field stimulation was revealed, which was unaffected by atropine but blocked by tetrodotoxin.
4 Release of ATP increased 3 to 6 times above background during stimulation of these non-adrenergic, non-cholinergic, inhibitory nerves.
5 Neither quinacrine staining nor the release of ATP during inhibitory nerve stimulation was affected by 6-hydroxydopamine treatment, which abolished catecholamine fluorescence.
6 Exogenous ATP produced relaxation in high tone preparations of the rabbit anococcygeus muscle. ATP produced either contraction or a small relaxation followed by a contraction of the rat anococcygeus muscle, but treatment with low concentrations of the prostaglandin synthesis inhibitor indomethacin, converted the contraction to a relaxation.
7 These data are consistent with the view that the anococcygeus muscle is innervated by purinergic inhibitory nerves.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BULBRING E. Measurements of oxygen consumption in smooth muscle. J Physiol. 1953 Oct;122(1):111–134. doi: 10.1113/jphysiol.1953.sp004983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Burnstock G., Holman M. Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J Physiol. 1966 Feb;182(3):541–558. doi: 10.1113/jphysiol.1966.sp007836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnstock G., Campbell G., Satchell D., Smythe A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol. 1970 Dec;40(4):668–688. doi: 10.1111/j.1476-5381.1970.tb10646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnstock G., Cocks T., Crowe R., Kasakov L. Purinergic innervation of the guinea-pig urinary bladder. Br J Pharmacol. 1978 May;63(1):125–138. doi: 10.1111/j.1476-5381.1978.tb07782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnstock G., Cocks T., Paddle B., Staszewska-Barczak J. Evidence that prostaglandin is responsible for the 'rebound contraction' following stimulation of non-adrenergic, non-cholinergic ('purinergic') inhibitory nerves. Eur J Pharmacol. 1975 Apr;31(2):360–362. doi: 10.1016/0014-2999(75)90060-6. [DOI] [PubMed] [Google Scholar]
- Burnstock G. Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev. 1969 Dec;21(4):247–324. [PubMed] [Google Scholar]
- Burnstock G. Neural nomenclature. Nature. 1971 Jan 22;229(5282):282–283. doi: 10.1038/229282d0. [DOI] [PubMed] [Google Scholar]
- Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sep;24(3):509–581. [PubMed] [Google Scholar]
- Creed K. E., Gillespie J. S., McCaffery H. The rabbit anococcygeus muscle and its response to field stimulation and to some drugs. J Physiol. 1977 Dec;273(1):121–135. doi: 10.1113/jphysiol.1977.sp012085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creed K. E., Gillespie J. S. Some electrical properties of the rabbit anococcygeus muscle and a comparison of the effects of inhibitory nerve stimulation in the rat and rabbit. J Physiol. 1977 Dec;273(1):137–153. doi: 10.1113/jphysiol.1977.sp012086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie J. S., Lüllmann-Rauch R. On the ultrastructure of the rat anococcygeus muscle. Cell Tissue Res. 1974;149(1):91–104. doi: 10.1007/BF00209052. [DOI] [PubMed] [Google Scholar]
- Gillespie J. S., McGrath J. C. The response of the cat anococcygeus muscle to nerve or drug stimulation and a comparison with the rat anococcygeus. Br J Pharmacol. 1974 Jan;50(1):109–118. doi: 10.1111/j.1476-5381.1974.tb09597.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie J. S. The rat anococcygeus muscle and its response to nerve stimulation and to some drugs. Br J Pharmacol. 1972 Jul;45(3):404–416. doi: 10.1111/j.1476-5381.1972.tb08097.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLTON P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol. 1959 Mar 12;145(3):494–504. doi: 10.1113/jphysiol.1959.sp006157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IRVIN J. L., IRVIN E. M. The interaction of quinacrine with adenine nucleotides. J Biol Chem. 1954 Sep;210(1):45–56. [PubMed] [Google Scholar]
- Johansen T., Lewis G. P. Dependence of histamine release from rat mast cells induced by the ionophore A23187 on endogenous adenosine triphosphate [proceedings]. Br J Pharmacol. 1977 Mar;59(3):474P–475P. [PMC free article] [PubMed] [Google Scholar]
- KARNOVSKY M. J., ROOTS L. A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES. J Histochem Cytochem. 1964 Mar;12:219–221. doi: 10.1177/12.3.219. [DOI] [PubMed] [Google Scholar]
- Langer S. Z., Pinto J. E. Possible involvement of a transmitter different from norepinephrine in the residual responses to nerve stimulation of the cat nictitating membrane after pretreatment with reserpine. J Pharmacol Exp Ther. 1976 Mar;196(3):697–713. [PubMed] [Google Scholar]
- MCELROY W. D., SELIGER H. E. THE CHEMISTRY OF LIGHT EMISSION. Adv Enzymol Relat Areas Mol Biol. 1963;25:119–166. doi: 10.1002/9780470122709.ch3. [DOI] [PubMed] [Google Scholar]
- Needleman P., Minkes M. S., Douglas J. R., Jr Stimulation of prostaglandin biosynthesis by adenine nucleotides. Profile of prostaglandin release by perfused organs. Circ Res. 1974 Apr;34(4):455–460. doi: 10.1161/01.res.34.4.455. [DOI] [PubMed] [Google Scholar]
- Olson L., Alund M., Norberg K. A. Fluorescence-microscopical demonstration of a population of gastro-intestinal nerve fibres with a selective affinity for quinacrine. Cell Tissue Res. 1976 Sep 1;171(4):407–423. doi: 10.1007/BF00220234. [DOI] [PubMed] [Google Scholar]
- Smith A. D. Subcellular localisation of noradrenaline in sympathetic neurons. Pharmacol Rev. 1972 Sep;24(3):435–457. [PubMed] [Google Scholar]
- Strehler B. L. Bioluminescence assay: principles and practice. Methods Biochem Anal. 1968;16:99–181. doi: 10.1002/9780470110348.ch2. [DOI] [PubMed] [Google Scholar]
- Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
- Wai S. S., Coupar I. M. The inhibitory response of the rabbit anococcygeus muscle. Clin Exp Pharmacol Physiol. 1976 Mar-Apr;3(2):141–145. doi: 10.1111/j.1440-1681.1976.tb00598.x. [DOI] [PubMed] [Google Scholar]


