Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1978 Sep;64(1):9–12. doi: 10.1111/j.1476-5381.1978.tb08634.x

Anti-depressant action of caesium chloride and its modification of chlorpromazine toxicity in mice.

F S Messiha
PMCID: PMC1668271  PMID: 698485

Abstract

1. Adult male mice were treated with caesium chloride (1.0 mEq/kg, i.p.) once daily for 54 consecutive days before administration of a single dose or reserpine (2.0 mg/kg) or (+)-amphetamine (1.0 mg/kg). Pretreatment with caesium chloride resulted in potentiation of amphetamine-produced enhancement of motility and in antagonism of reserpine-induced behavioural depression in mice as measured by a locomotor activity test, compared to the respective controls. 2. Chronic administration of caesium chloride (1.0 mEq/kg daily) with gradual dose build-up of chlorpromazine (up to 50 mg kg-1 day-1) counteracted chlorpromazine-produced mortality in mice. 3. The results suggest an antidepressant property of Cs+ and the combined treatment of caesium chloride with chlorpromazine might have a clinical application, i.e. in the management of chlorpromazine-induced adverse reaction.

Full text

PDF
9

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYD E. M. Chlorpromazine tolerance and physical dependence. J Pharmacol Exp Ther. 1960 Jan;128:75–78. [PubMed] [Google Scholar]
  2. Dalén P. Lithium therapy in Huntington's chorea and tardive dyskinesia. Lancet. 1973 Jan 13;1(7794):107–108. doi: 10.1016/s0140-6736(73)90510-2. [DOI] [PubMed] [Google Scholar]
  3. Fieve R. R., Meltzer H., Dunner D. L., Levitt M., Mendlewicz J., Thomas A. Rubidium: biochemical, behavioral, and metabolic studies in humans. Am J Psychiatry. 1973 Jan;130(1):55–61. doi: 10.1176/ajp.130.1.55. [DOI] [PubMed] [Google Scholar]
  4. Gardocki J. F., Schuler M. E., Goldstein L. Reconsideration of the central nervous system pharmacology of amphetamine. I. Toxicity in grouped and isolated mice. Toxicol Appl Pharmacol. 1966 May;8(3):550–557. doi: 10.1016/0041-008x(66)90067-6. [DOI] [PubMed] [Google Scholar]
  5. George D. J., Wolf H. H. Dose-lethality curves for d-amphetamine in isolated and aggregated mice. Life Sci. 1966 Sep;5(17):1583–1590. doi: 10.1016/0024-3205(66)91027-7. [DOI] [PubMed] [Google Scholar]
  6. Messiha F. S. Alkali metal ions and ethanol narcosis in mice. Pharmacology. 1976;14(2):153–157. doi: 10.1159/000136590. [DOI] [PubMed] [Google Scholar]
  7. Messiha F. S. Distribution and retention of exogenously administered alkali metal ions in the mouse brain. Arch Int Pharmacodyn Ther. 1976 Jan;219(1):87–96. [PubMed] [Google Scholar]
  8. Messiha F. S., Erickson H. M., Jr, Goggin J. E. Lithium carbonate in Gilles de la Tourette's disease. Res Commun Chem Pathol Pharmacol. 1976 Nov;15(3):609–612. [PubMed] [Google Scholar]
  9. Messiha F. S., Krantz J. C., Jr Effect of cesium ion on cerebral activity of the mouse. Am J Pharm Sci Support Public Health. 1973 Jan;145(1):17–21. [PubMed] [Google Scholar]
  10. Messina F. S. Caesium ion: antagonism to chlorpromazine- and L-dopa- produced behavioural depression in mice. J Pharm Pharmacol. 1975 Nov;27(11):873–874. doi: 10.1111/j.2042-7158.1975.tb10236.x. [DOI] [PubMed] [Google Scholar]
  11. Scheving L. E., Vedral D. F., Pauly J. E. Daily circadian rhythm in rats to D-amphetamine sulphate: effect of blinding and continuous illumination on the rhythm. Nature. 1968 Aug 10;219(5154):621–622. doi: 10.1038/219621a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES