Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1978 May;63(1):7–15. doi: 10.1111/j.1476-5381.1978.tb07768.x

Central adrenoceptors and cholinoceptors in cardiovascular control.

K P Bhargava, I P Jain, A K Saxena, J N Sinha, K K Tangri
PMCID: PMC1668279  PMID: 647165

Abstract

1. In cats anaesthetized with chloralose, adrenoceptor and cholinoceptor agonists and antagonists were localized to the posterior hypothalamus (PH), lateral medullary pressor area (LMPA) and spinal autonomic loci to delineate the role of central cholinoceptors and adrenoceptors in cardiovascular control. 2 All along the neuroaxis, the alpha-adrenoceptors seem to subserve an inhibitory and the beta-adrenoceptors a facilitatory role in cardiovascular control. There appear to be a predominance of alpha-adrenoceptors at the medullary level and beta-adrenoceptors at the hypothalamic level. 3 The nicotinic cholinoceptors at the hypothalamic, medullary and spinal levels were facilitatory, whereas muscarinic cholinoceptors were inhibitory for cardiovascular control. However, muscarinic receptors were undetectable at the posterior hypothalamus. 4 The central cardiovascular effects of nicotine are attributed to nicotinic receptor activation and release of central catecholamines. 5 There appears to be a relationship between central cholinergic and adrenergic mechanisms in cardiovascular control.

Full text

PDF
7

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitage A. K., Hall G. H. Further evidence relating to the mode of action of nicotine in the central nervous system. Nature. 1967 Jun 3;214(5092):977–979. doi: 10.1038/214977a0. [DOI] [PubMed] [Google Scholar]
  2. BHARGAVA K. P., KULSRESHTHA J. K. The spinal compression vasomotor response as a pharmacological tool. Arch Int Pharmacodyn Ther. 1959 May 1;120(1):85–96. [PubMed] [Google Scholar]
  3. BHATTACHARYA B. K., FELDBERG W. Perfusion of cerebral ventricles: effects of drugs on outflow from the cisterna and the aqueduct. Br J Pharmacol Chemother. 1958 Jun;13(2):156–162. doi: 10.1111/j.1476-5381.1958.tb00211.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BHAWE W. B. Experiments on the fate of histamine and acetylcholine after their injection into the cerebral ventricles. J Physiol. 1958 Feb 17;140(2):169–189. doi: 10.1113/jphysiol.1958.sp005925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhargava K. P., Mishra N., Tangri K. K. An analysis of central adrenoceptors for control of cardiovascular function. Br J Pharmacol. 1972 Aug;45(4):596–602. doi: 10.1111/j.1476-5381.1972.tb08117.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bhargava K. P. On the importance of a central beta-adrenoceptor site in the antiarrhythmic activity of beta-blockers. Indian Heart J. 1972 Jun;24(Suppl):157–166. [PubMed] [Google Scholar]
  7. Bhargava K. P., Srivastava R. K. Analysis of the central receptors concerned in the cardiovascular response induced by intracerebroventricular aconitine. Neuropharmacology. 1972 Jan;11(1):123–135. doi: 10.1016/0028-3908(72)90063-9. [DOI] [PubMed] [Google Scholar]
  8. Bhargava K. P., Srivastava R. K. Effects of d-tubocurarine and decamethonium on spinal autonomic loci. Eur J Pharmacol. 1970 Feb;9(2):220–226. doi: 10.1016/0014-2999(70)90303-1. [DOI] [PubMed] [Google Scholar]
  9. Black I. B., Petito C. K. Catecholamine enzymes in the degenerative neurological disease idiopathic orthostatic hypotension. Science. 1976 May 28;192(4242):910–912. doi: 10.1126/science.5774. [DOI] [PubMed] [Google Scholar]
  10. Brezenoff H. E. Cardiovascular responses to intrahypothalamic injections of carbachol and certain cholinesterase inhibitors. Neuropharmacology. 1972 Sep;11(5):637–644. doi: 10.1016/0028-3908(72)90072-x. [DOI] [PubMed] [Google Scholar]
  11. Brezenoff H. E., Jenden D. J. Changes in arterial blood pressure after microinjections of carbachol into the medulla and IVth ventricle of the rat brain. Neuropharmacology. 1970 Jul;9(4):341–348. doi: 10.1016/0028-3908(70)90031-6. [DOI] [PubMed] [Google Scholar]
  12. Day M. D., Roach A. G. Central alpha- and beta-adrenoceptors modifying arterial blood pressure and heart rate in conscious cats. Br J Pharmacol. 1974 Jul;51(3):325–333. doi: 10.1111/j.1476-5381.1974.tb10666.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. De Jong W. Noradrenaline: central inhibitory control of blood pressure and heart rate. Eur J Pharmacol. 1974 Nov;29(1):179–181. doi: 10.1016/0014-2999(74)90188-5. [DOI] [PubMed] [Google Scholar]
  14. Gagnon D. J., Melville K. I. Centrally mediated cardiovascular responses to isoprenaline. Int J Neuropharmacol. 1967 Jul;6(4):245–251. doi: 10.1016/0028-3908(67)90012-3. [DOI] [PubMed] [Google Scholar]
  15. Guertzenstein P. G. Blood pressure effects obtained by drugs applied to the ventral surface of the brain stem. J Physiol. 1973 Mar;229(2):395–408. doi: 10.1113/jphysiol.1973.sp010145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lang W. J., Rush M. L. Cardiovascular responses to injections of cholinomimetic drugs into the cerebral ventricles of unanaesthetized dogs. Br J Pharmacol. 1973 Feb;47(2):196–205. doi: 10.1111/j.1476-5381.1973.tb08317.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NASHOLD B. S., Jr, MANNARINO E., WUNDERLICH M. Pressor-depressor blood pressure responses in the cat after intraventricular injection of drugs. Nature. 1962 Mar 31;193:1297–1298. doi: 10.1038/1931297a0. [DOI] [PubMed] [Google Scholar]
  18. Philippu A., Przuntek H., Roensberg W. Superfusion of the hypothalamus with gamma-aminobutyric acid. Effect on release of noradrenaline and blood pressure. Naunyn Schmiedebergs Arch Pharmacol. 1973;276(2):103–118. doi: 10.1007/BF00501183. [DOI] [PubMed] [Google Scholar]
  19. Saavedra J. M., Grobecker H., Axelrod J. Adrenaline-forming enzyme in brainstem: elevation in genetic and experimental hypertension. Science. 1976 Feb 6;191(4226):483–484. doi: 10.1126/science.1246633. [DOI] [PubMed] [Google Scholar]
  20. Saxena P. R., Bhargava K. P. Central beta-adrenoceptor sites and ouabain action. Pharmacol Res Commun. 1974 Aug;6(4):347–355. doi: 10.1016/s0031-6989(74)80034-2. [DOI] [PubMed] [Google Scholar]
  21. Saxena P. R., Bhargava K. P. The importance of a central adrenergic mechanism in the cardiovascular responses to ouabain. Eur J Pharmacol. 1975 Apr;31(2):332–346. doi: 10.1016/0014-2999(75)90057-6. [DOI] [PubMed] [Google Scholar]
  22. Schmitt H., Boissier J. R., Giudicelli J. F., Fichelle J. Cardiovascular effects of 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride (ST 155). II. Central sympathetic structures. Eur J Pharmacol. 1968 Mar;2(5):340–346. doi: 10.1016/0014-2999(68)90184-2. [DOI] [PubMed] [Google Scholar]
  23. Schmitt H., Fenard S. Evidence for an alpha-sympathomimetic component in the effects of catapresan on vasomotor centres: antagonism by piperoxane. Eur J Pharmacol. 1971;14(1):98–100. doi: 10.1016/0014-2999(71)90130-0. [DOI] [PubMed] [Google Scholar]
  24. Schmitt H., Fénard S. Effets des substances sympathomimétiques sur les centres vasomoteurs. Arch Int Pharmacodyn Ther. 1971 Apr;190(2):229–240. [PubMed] [Google Scholar]
  25. Sinha J. N., Dhawan K. N., Chandra O., Gupta G. P. Role of acetylcholine in central vasomotor regulation. Can J Physiol Pharmacol. 1967 May;45(3):503–507. doi: 10.1139/y67-059. [DOI] [PubMed] [Google Scholar]
  26. Srimal R. C., Jaju B. P., Sinha J. N., Dixit K. S., Bhargava K. P. Analysis of the central vasomotor effects of choline. Eur J Pharmacol. 1969 Feb;5(3):239–244. doi: 10.1016/0014-2999(69)90144-7. [DOI] [PubMed] [Google Scholar]
  27. Struyker Boudier H. A., Smeets G. W., Brouwer G. M., van Rossum J. M. Hypothalamic alpha adrenergic receptors in cardiovascular regulation. Neuropharmacology. 1974 Sep;13(9):837–846. doi: 10.1016/0028-3908(74)90039-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES