Abstract
1 Neurochemical changes and tissue weights were measured following intrastriatal injection of 2.5 microgram of kainic acid in 2 microliter of 0.9% w/v NaCl solution (saline) in the rat. 2 After kainic acid the striatum and neocortex on the injected side showed a progressive reduction in weight, the neocortex showing the greatest absolute weight loss and the striatum the greatest percentage change. 3 Large (80-90%) reduction in choline acetyltransferase (CAT) and L-glutamate decarboxylase (GAD) activities in the striatum occurred within 2-4 days of the injection and persisted at least 10 weeks. At 10 weeks CAT and GAD activities were unaltered in the neocortex. 4 The absolute content of dopamine in the striatum was not different from control 5 days after the injection of kainic acid but was reduced at 2 and 10 weeks. At 2 weeks the concentration (microgram/g wet weight) of dopamine also was reduced but at 10 weeks it was near normal due to atrophy of the striatum. 5 The high affinity glutamate uptake into a crude synaptosomal preparation of the striatum was reduced by 64% 5 days after kainic acid and still reduced by 67% at 10 weeks. 6 The efflux of glutamate from slices of the striatum in the presence of 52 mM K+ was reduced by approximately 75% 5 days and 15 weeks after kainic acid. 7 In vitro kainic acid (10(-4) M) neither altered the high affinity uptake of radiolabelled glutamate into a homogenate of the striatum, nor released endogenous glutamate from slices of striatum.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERS R. W., BRADY R. O. The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey. J Biol Chem. 1959 Apr;234(4):926–928. [PubMed] [Google Scholar]
- Balcar V. J., Johnston G. A. The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices. J Neurochem. 1972 Nov;19(11):2657–2666. doi: 10.1111/j.1471-4159.1972.tb01325.x. [DOI] [PubMed] [Google Scholar]
- Balcom G. J., Lenox R. H., Meyerhoff J. L. Regional glutamate levels in rat brain determined after microwave fixation. J Neurochem. 1976 Feb;26(2):423–425. doi: 10.1111/j.1471-4159.1976.tb04499.x. [DOI] [PubMed] [Google Scholar]
- Bird E. D., Iversen L. L. Huntington's chorea. Post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain. 1974 Sep;97(3):457–472. doi: 10.1093/brain/97.1.457. [DOI] [PubMed] [Google Scholar]
- Bruck J., Gerstenbrand F., Gnad H., Gründig E., Prosenz P. Ueber Veränderungen der Zusammensetzung des Liquor Cerebrospinalis beim choreatischen Syndrom. J Neurol Sci. 1967 Sep-Oct;5(2):257–265. doi: 10.1016/0022-510x(67)90134-7. [DOI] [PubMed] [Google Scholar]
- Coyle J. T., Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature. 1976 Sep 16;263(5574):244–246. doi: 10.1038/263244a0. [DOI] [PubMed] [Google Scholar]
- Cuello A. C., Hiley R., Iversen L. L. Use of catechol O-methyltransferase for the enzyme radiochemical assay of dopamine. J Neurochem. 1973 Nov;21(5):1337–1340. doi: 10.1111/j.1471-4159.1973.tb07587.x. [DOI] [PubMed] [Google Scholar]
- Divac I., Fonnum F., Storm-Mathisen J. High affinity uptake of glutamate in terminals of corticostriatal axons. Nature. 1977 Mar 24;266(5600):377–378. doi: 10.1038/266377a0. [DOI] [PubMed] [Google Scholar]
- Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
- Glowinski J., Iversen L. L. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966 Aug;13(8):655–669. doi: 10.1111/j.1471-4159.1966.tb09873.x. [DOI] [PubMed] [Google Scholar]
- Graham L. T., Jr, Aprison M. H. Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem. 1966 Jun;15(3):487–497. doi: 10.1016/0003-2697(66)90110-2. [DOI] [PubMed] [Google Scholar]
- Johnston G. A., Curtis D. R., Davies J., McCulloch R. M. Spinal interneurone excitation by conformationally restricted analogues of L-glutamic acid. Nature. 1974 Apr 26;248(5451):804–805. doi: 10.1038/248804a0. [DOI] [PubMed] [Google Scholar]
- Kanazawa I., Iversen L. L., Kelly J. S. Glutamate decarboxylase activity in the rat posterior pituitary, pineal gland, dorsal root ganglion and superior cervical ganglion. J Neurochem. 1976 Nov;27(5):1267–1269. doi: 10.1111/j.1471-4159.1976.tb00341.x. [DOI] [PubMed] [Google Scholar]
- Kelly P. H., Joyce E. M., Minneman K. P., Phillipson O. T. Specificity of 6-hydroxydopamine-induced destruction of mesolimbic or nigrostriatal dopamine-containing terminals. Brain Res. 1977 Feb 18;122(2):382–387. doi: 10.1016/0006-8993(77)90307-9. [DOI] [PubMed] [Google Scholar]
- Logan W. J., Snyder S. H. High affinity uptake systems for glycine, glutamic and aspaspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 1972 Jul 20;42(2):413–431. doi: 10.1016/0006-8993(72)90540-9. [DOI] [PubMed] [Google Scholar]
- McGeer E. G., McGeer P. L. Duplication of biochemical changes of Huntington's chorea by intrastriatal injections of glutamic and kainic acids. Nature. 1976 Oct 7;263(5577):517–519. doi: 10.1038/263517a0. [DOI] [PubMed] [Google Scholar]
- McGeer P. L., McGeer E. G. Enzymes associated with the metabolism of catecholamines, acetylcholine and gaba in human controls and patients with Parkinson's disease and Huntington's chorea. J Neurochem. 1976 Jan;26(1):65–76. [PubMed] [Google Scholar]
- Moore K. E., Phillipson O. T. Effects of dexamethasone on phenylethanolamine N-methyltransferase and adrenaline in the brains and superior cervical ganglia of adult and neonatal rats. J Neurochem. 1975 Sep;25(3):289–294. doi: 10.1111/j.1471-4159.1975.tb06968.x. [DOI] [PubMed] [Google Scholar]
- Perry T. L., Hansen S., Kloster M. Huntington's chorea. Deficiency of gamma-aminobutyric acid in brain. N Engl J Med. 1973 Feb 15;288(7):337–342. doi: 10.1056/NEJM197302152880703. [DOI] [PubMed] [Google Scholar]
- Shinozaki H., Konishi S. Actions of several anthelmintics and insecticides on rat cortical neurones. Brain Res. 1970 Dec 1;24(2):368–371. doi: 10.1016/0006-8993(70)90122-8. [DOI] [PubMed] [Google Scholar]
- Spencer H. J. Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Res. 1976 Jan 30;102(1):91–101. doi: 10.1016/0006-8993(76)90577-1. [DOI] [PubMed] [Google Scholar]
- Storm-Mathisen J. Glutamic acid and excitatory nerve endings: reduction of glutamic acid uptake after axotomy. Brain Res. 1977 Jan 21;120(2):379–386. doi: 10.1016/0006-8993(77)90918-0. [DOI] [PubMed] [Google Scholar]
