Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1978 Dec;64(4):503–510. doi: 10.1111/j.1476-5381.1978.tb17311.x

The effects of diltiazem (CRD-401) on the membrane and mechanical properties of vascular smooth muscles of the rabbit.

Y Ito, H Kuriyama, H Suzuki
PMCID: PMC1668452  PMID: 728679

Abstract

1 The effects of diltiazem on electrical and mechanical properties of vascular smooth muscles of the rabbit were examined by various experimental procedures. 2 In the pulmonary artery, diltiazem (0.1 to 10 microgram/ml) did not modify the membrane potential (-56 mV), length constant of the tissue (1.47 mm) or rectifying properties of the membrane. Diltiazem (0.1 to 10 microgram/ml) did not modify the membrane potential of the mesenteric artery (-62.5 mV). 3 Diltiazem (1 to 10 microgram/ml) suppressed mechanical responses of pulmonary and mesenteric arteries induced either by direct stimulation of the muscle (1.0 s pulse) or by neural activation (0.5 ms pulse, 30 Hz and 10 s total duration). Diltiazem suppressed the contraction induced by nerve stimulation to a greater extent than that induced by direct muscle stimulation. 4 When the depolarization-contraction relationship of the smooth muscle of the pulmonary artery was observed by voltage clamp technique, diltiazem (1 to 10 microgram/ml) raised the critical membrane potential to evoke contraction from 5 mV to 12 mV, and reduced the amplitude of contraction obtained at any given depolarization level. 5 In the pulmonary artery, diltiazem (10 microgram/ml) suppressed K-induced contraction and raised the mechanical threshold, while K-induced depolarization was not suppressed. Diltiazem (1 to 10 microgram/ml) also suppressed noradrenaline-induced contraction, raised the mechanical threshold and suppressed noradrenaline-induced depolarization. 6 The vasodilator actions of diltiazem on the vascular smooth muscle were compared to vasodilator actions observed with other Ca-antagonists.

Full text

PDF
503

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Tomita T. Cable properties of smooth muscle. J Physiol. 1968 May;196(1):87–100. doi: 10.1113/jphysiol.1968.sp008496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson N. C., Jr Voltage-clamp studies on uterine smooth muscle. J Gen Physiol. 1969 Aug;54(2):145–165. doi: 10.1085/jgp.54.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BULBRING E., KURIYAMA H. Effects of changes in the external sodium and calcium concentrations on spontaneous electrical activity in smooth muscle of guinea-pig taenia coli. J Physiol. 1963 Apr;166:29–58. doi: 10.1113/jphysiol.1963.sp007089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casteels R., Kitamura K., Kuriyama H., Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol. 1977 Sep;271(1):63–79. doi: 10.1113/jphysiol.1977.sp011990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casteels R., Kitamura K., Kuriyama H., Suzuki H. The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery. J Physiol. 1977 Sep;271(1):41–61. doi: 10.1113/jphysiol.1977.sp011989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fleckenstein A., Byon K. Y. Proceedings: Prevention by Ca-antagonistic compounds (verapamil, D 600) of coronary smooth muscle contractures due to treatment with cardiac glycosides. Naunyn Schmiedebergs Arch Pharmacol. 1974;282(Suppl):suppl 282–282:R20. [PubMed] [Google Scholar]
  7. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17:149–166. doi: 10.1146/annurev.pa.17.040177.001053. [DOI] [PubMed] [Google Scholar]
  8. Golenhofen K., Hermstein N. Differentiation of calcium activation mechanisms in vascular smooth muscle by selective suppression with verapamil and D 600-1. Blood Vessels. 1975;12(1):21–37. doi: 10.1159/000158036. [DOI] [PubMed] [Google Scholar]
  9. Goto M., Wada Y., Saito M. Tension components and tension fall of the bullfrog atrial muscle during depolarization. Jpn J Physiol. 1974 Aug;24(4):359–375. doi: 10.2170/jjphysiol.24.359. [DOI] [PubMed] [Google Scholar]
  10. Grün G., Fleckenstein A. Die elektromechanische Entkoppelung der glatten Gefässmuskulatur als Grundprinzip der Coronardilatation durch 4-(2'-Nitrophenyl)-2,6-dimethyl-1,4-dihydropyridin-3,5-dicarbonsäure-dimethylester (BAY a 1040, Nifedipine. Arzneimittelforschung. 1972 Feb;22(2):334–344. [PubMed] [Google Scholar]
  11. Hurwitz L., Suria A. The link between agonist action and response in smooth muscle. Annu Rev Pharmacol. 1971;11:303–326. doi: 10.1146/annurev.pa.11.040171.001511. [DOI] [PubMed] [Google Scholar]
  12. Ito Y., Suzuki H., Kuriyama H. On the roles of calcium ion during potassium induced contracture in the smooth muscle cells of the rabbit main pulmonary artery. Jpn J Physiol. 1977;27(6):755–770. doi: 10.2170/jjphysiol.27.755. [DOI] [PubMed] [Google Scholar]
  13. Katz B., Miledi R. The timing of calcium action during neuromuscular transmission. J Physiol. 1967 Apr;189(3):535–544. doi: 10.1113/jphysiol.1967.sp008183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Magaribuchi T., Nakajima H., Kiyomoto A. Effects of diltiazem and lanthanum ion on the potassium contracture of isolated guinea pig smooth muscle. Jpn J Pharmacol. 1977 Jun;27(3):333–339. doi: 10.1254/jjp.27.333. [DOI] [PubMed] [Google Scholar]
  15. Magaribuchi T., Nakajima H., Kiyomoto A. Effects of diltiazem on electrical and mechanical activities of isolated guinea pig taenia coli. Jpn J Pharmacol. 1977 Jun;27(3):361–369. doi: 10.1254/jjp.27.361. [DOI] [PubMed] [Google Scholar]
  16. Magaribuchi T., Nakajima H., Takenaga H., Kiyomoto A. Effect of diltiazem on the transmembrane potential of isolated guinea pig taenia coli. Jpn J Pharmacol. 1977 Apr;27(2):319–322. doi: 10.1254/jjp.27.319. [DOI] [PubMed] [Google Scholar]
  17. Ohba M., Sakamoto Y., Tomita T. The slow wave in the circular muscle of the guinea-pig stomach. J Physiol. 1975 Dec;253(2):505–516. doi: 10.1113/jphysiol.1975.sp011203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peiper U., Schmidt E. Relaxation of coronary arteries by electro-mechanical decoupling or adrenergic stimulation. Pflugers Arch. 1972;337(2):107–117. doi: 10.1007/BF00587834. [DOI] [PubMed] [Google Scholar]
  19. Rougier O., Vassort G., Garnier D., Gargouïl Y. M., Coraboeuf E. Données nouvelles concernant le rôle des ions Na+ et Ca+ sur les propriétés électrophysiologiques des membranes cardiaques; existence d'un canal lent. C R Acad Sci Hebd Seances Acad Sci D. 1968 Feb 19;266(8):802–805. [PubMed] [Google Scholar]
  20. Sato M., Nagao T., Yamaguchi I., Nakajima H., Kiyomoto A. Pharmacological studies on a new l,5-benzothiazepine derivative (CRD-401). Arzneimittelforschung. 1971 Sep;21(9):1338–1343. [PubMed] [Google Scholar]
  21. Somlyo A. P., Somlyo A. V. Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol Rev. 1968 Dec;20(4):197–272. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES