Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1978 Dec;64(4):607–614. doi: 10.1111/j.1476-5381.1978.tb17323.x

Comparison of the receptor binding characteristics of opiate agonists interacting with mu- or kappa-receptors.

H W Kosterlitz, F M Leslie
PMCID: PMC1668454  PMID: 215262

Abstract

1 The receptor binding characteristics of various morphine-like and ketazocine-like opiate agonists were measured by inhibition of [3H]-naloxone binding in homogenates of brain and of ileal myenteric plexus-longitudinal muscle of the guinea-pig. No differences were found for the two tissues. 2 The depressant effect of Na+ on the inhibition of [3H]-naloxone binding by opiate agonists varies widely, giving sodium shifts between 5 and 140. The relationship between Na+ concentration and inhibition of binding is non-linear, the magnitude of the sodium shift varying directly with the slope of the regression of log IC50 on log [NaCl]. 3 The sodium shift of ketazocine-like agonists is lower than that of morphine-like agonists but higher than that of opiates with dual agonist and antagonist action. A working hypothesis is proposed which suggests that the kappa-receptors for the ketazocine-like drugs are less susceptible to the Na+ effect than the mu-receptors for the morphine-like drugs. 4 For most of the morphine-like but not the ketazocine-like agonists, a good correlation has been found for the pharmacological activity in the myenteric plexus-longitudinal muscle preparation and the inhibition of binding of [3H]-naloxone at 12 mM Na+. An exception is fentanyl which has a much greater pharmacological potency than may be expected from its potency in inhibiting [3H]-naloxone binding.

Full text

PDF
607

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Creese I., Snyder S. H. Receptor binding and pharmacological activity of opiates in the guinea-pig intestine. J Pharmacol Exp Ther. 1975 Jul;194(1):205–219. [PubMed] [Google Scholar]
  2. Gilbert P. E., Martin W. R. The effects of morphine and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976 Jul;198(1):66–82. [PubMed] [Google Scholar]
  3. Hughes J., Kosterlitz H. W., Leslie F. M. Effect of morphine on adrenergic transmission in the mouse vas deferens. Assessment of agonist and antogonist potencies of narcotic analgesics. Br J Pharmacol. 1975 Mar;53(3):371–381. doi: 10.1111/j.1476-5381.1975.tb07373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hutchinson M., Kosterlitz H. W., Leslie F. M., Waterfield A. A. Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey. Br J Pharmacol. 1975 Dec;55(4):541–546. doi: 10.1111/j.1476-5381.1975.tb07430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kosterlitz H. W., Leslie F. M. Inhibition of [3H]-naloxone binding by opiate agonists [proceedings]. Br J Pharmacol. 1977 Mar;59(3):478P–478P. [PMC free article] [PubMed] [Google Scholar]
  6. Kosterlitz H. W., Lydon R. J., Watt A. J. The effects of adrenaline, noradrenaline and isoprenaline on inhibitory alpha- and beta-adrenoceptors in the longitudinal muscle of the guinea-pig ileum. Br J Pharmacol. 1970 Jun;39(2):398–413. doi: 10.1111/j.1476-5381.1970.tb12903.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kosterlitz H. W., Waterfield A. A. In vitro models in the study of structure-activity relationships of narcotic analgesics. Annu Rev Pharmacol. 1975;15:29–47. doi: 10.1146/annurev.pa.15.040175.000333. [DOI] [PubMed] [Google Scholar]
  8. Kosterlitz H. W., Watt A. J. Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br J Pharmacol Chemother. 1968 Jun;33(2):266–276. doi: 10.1111/j.1476-5381.1968.tb00988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lee C. Y., Akera T., Brody T. M. Effects of Na+, k+, mg++ and Ca++ on the saturable binding of [3H]dihydromorphine and [3H]naloxone in vitro. J Pharmacol Exp Ther. 1977 Jul;202(1):166–173. [PubMed] [Google Scholar]
  10. Martin W. R., Eades C. G., Thompson J. A., Huppler R. E., Gilbert P. E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976 Jun;197(3):517–532. [PubMed] [Google Scholar]
  11. Martin W. R. Opioid antagonists. Pharmacol Rev. 1967 Dec;19(4):463–521. [PubMed] [Google Scholar]
  12. Pert C. B., Snyder S. H., May E. L. Opiate receptor interactions of benzomorphans in rat brain homogenates. J Pharmacol Exp Ther. 1976 Feb;196(2):316–322. [PubMed] [Google Scholar]
  13. Pert C. B., Snyder S. H. Properties of opiate-receptor binding in rat brain. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2243–2247. doi: 10.1073/pnas.70.8.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RANG H. P. STIMULANT ACTIONS OF VOLATILE ANAESTHETICS ON SMOOTH MUSCLE. Br J Pharmacol Chemother. 1964 Apr;22:356–365. doi: 10.1111/j.1476-5381.1964.tb02040.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Simon E. J., Hiller J. M., Edelman I. Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1947–1949. doi: 10.1073/pnas.70.7.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Simon E. J., Hiller J. M., Groth J., Edelman I. Further properties of stereospecific opiate binding sites in rat brain: on the nature of the sodium effect. J Pharmacol Exp Ther. 1975 Mar;192(3):531–537. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES