Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1979 Mar;65(3):403–409. doi: 10.1111/j.1476-5381.1979.tb07844.x

Saturable adenosine 5'-triphosphate-independent binding of [3H]-ouabain to brain and cardiac tissue in vitro.

T Akera, T M Brody, S A Wiest
PMCID: PMC1668633  PMID: 218666

Abstract

1. Several investigators have proposed that membrane Na+, K+-adenosine 5'-triphosphatase (Na+, K+-ATPase) is a mechanism for the transmembrane transport of cardiac glycosides, rather than the receptor for pharmacological actions of these agents. This implies that the glycosides bind to an intracellular constituent (receptor) other than Na+, K+-ATPase. 2. In search for such a receptor site, saturable ATP-independent [3H]-ouabain binding was studied in rat brain and dog and guinea-pig heart homogenates. The binding of the glucoside to this site results in a relatively unstable complex which is stabilized by K+ to a lesser extent than is the complex formed with the ATP-dependent binding to Na+, K+-ATPase. 3. The ATP-independent ouabain binding sites are more abundant in rat brain tissue than in cardiac tissue, and have a lower ouabain affinity compared to the binding sites on Na+, K+-ATPase. 4. These results do not support the contention that there are intracellular inotropic receptors for digitalis.

Full text

PDF
403

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akera D. K., Brody T. M., Ku D., Pew C. L. Cardiac glucosides: correlations among Na+ K+-ATPase, sodium pump and contractility in the guinea pig heart. Naunyn Schmiedebergs Arch Pharmacol. 1974;285(2):185–200. doi: 10.1007/BF00501153. [DOI] [PubMed] [Google Scholar]
  2. Akera T., Baskin S. I., Tobin T., Brody T. M. Ouabain: temporal relationship between the inotropic effect and the in vitro binding to, and dissociation from, (Na + + K + )- activated ATPase. Naunyn Schmiedebergs Arch Pharmacol. 1973;277(2):151–162. doi: 10.1007/BF00501156. [DOI] [PubMed] [Google Scholar]
  3. Akera T., Brody T. M. Membrane adenosine triphosphatase. The effect of potassium on the formation and dissociation of the ouabain-enzyme complex. J Pharmacol Exp Ther. 1971 Mar;176(3):545–557. [PubMed] [Google Scholar]
  4. Akera T., Larsen F. S., Brody T. M. Correlation of cardiac sodium- and potassium-activated adenosine triphosphatase activity with ouabain-induced inotropic stimulation. J Pharmacol Exp Ther. 1970 May;173(1):145–151. [PubMed] [Google Scholar]
  5. Akera T., Larsen F. S., Brody T. M. The effect of ouabain on sodium- and potassium-activated adenosine triphosphatase from the hearts of several mammalian species. J Pharmacol Exp Ther. 1969 Nov;170(1):17–26. [PubMed] [Google Scholar]
  6. Akera T. Membrane adenosinetriphosphatase: a digitalis receptor? Science. 1977 Nov 11;198(4317):569–574. doi: 10.1126/science.144320. [DOI] [PubMed] [Google Scholar]
  7. Akera T. Quantitative aspects of the interaction between ouabain and (Na + + K + )-activated ATPase in vitro. Biochim Biophys Acta. 1971 Oct 12;249(1):53–62. doi: 10.1016/0005-2736(71)90082-4. [DOI] [PubMed] [Google Scholar]
  8. Allen J. C., Martinez-Maldonado M., Eknoyan G., Suki W. N., Schwartz A. Relation between digitalis binding in vivo and inhibition of sodium, potassium-adenosine triphosphatase in canine kidney. Biochem Pharmacol. 1971 Jan;20(1):73–80. doi: 10.1016/0006-2952(71)90473-4. [DOI] [PubMed] [Google Scholar]
  9. BONTING S. L., SIMON K. A., HAWKINS N. M. Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat. Arch Biochem Biophys. 1961 Dec;95:416–423. doi: 10.1016/0003-9861(61)90170-9. [DOI] [PubMed] [Google Scholar]
  10. Bentfeld M., Lüllmann H., Peters T., Proppe D. Interdependence of ion transport and the action of quabain in heart muscle. Br J Pharmacol. 1977 Sep;61(1):19–27. doi: 10.1111/j.1476-5381.1977.tb09735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Besch H. R., Jr, Allen J. C., Glick G., Schwartz A. Correlation between the inotropic action of ouabain and its effects on subcellular enzyme systems from canine myocardium. J Pharmacol Exp Ther. 1970 Jan;171(1):1–12. [PubMed] [Google Scholar]
  12. Dutta S., Goswami S., Datta D. K., Lindower J. O., Marks B. H. The uptake and binding of six radiolabeled cardiac glycosides by guinea-pig hearts and by isolated sarcoplasmic reticulum. J Pharmacol Exp Ther. 1968 Nov;164(1):10–21. [PubMed] [Google Scholar]
  13. Fricke U., Klaus W. Evidence for two different Na+-dependent [3H]-ouabain binding sites of a Na+-K+-ATPase of guinea-pig hearts. Br J Pharmacol. 1977 Nov;61(3):423–428. doi: 10.1111/j.1476-5381.1977.tb08435.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gervais A., Lane L. K., Anner B. M., Lindenmayer G. E., Schwartz A. A possible molecular mechanism of the action of digitalis: ouabain action on calcium binding to sites associated with a purified sodium-potassium-activated adenosine triphosphatase from kidney. Circ Res. 1977 Jan;40(1):8–14. doi: 10.1161/01.res.40.1.8. [DOI] [PubMed] [Google Scholar]
  15. Goldman R. H., Coltart D. J., Schweizer E., Snidow G., Harrison D. C. Dose response in vivo to digoxin in normo-and hyperkalaemia: associated biochemical changes. Cardiovasc Res. 1975 Jul;9(4):515–523. doi: 10.1093/cvr/9.4.515. [DOI] [PubMed] [Google Scholar]
  16. Hall R. J., Gelbart A., Silverman M., Goldman R. H. Studies on digitalis-induced arrhythmias in glucose- and insulin-induced hypokalemia. J Pharmacol Exp Ther. 1977 Jun;201(3):711–722. [PubMed] [Google Scholar]
  17. Hansen O., Jensen J., Norby J. G. Mutual exclusion of ATP, ADP and g-strophanthin binding to NaK-ATPase. Nat New Biol. 1971 Nov 24;234(47):122–124. doi: 10.1038/newbio234122a0. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Langer G. A. Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility. Physiol Rev. 1968 Oct;48(4):708–757. doi: 10.1152/physrev.1968.48.4.708. [DOI] [PubMed] [Google Scholar]
  20. Langer G. A., Serena S. D. Effects of strophanthidin upon contraction and ionic exchange in rabbit ventricular myocardium: relation to control of active state. J Mol Cell Cardiol. 1970 Mar;1(1):65–90. doi: 10.1016/0022-2828(70)90029-5. [DOI] [PubMed] [Google Scholar]
  21. Lee K. S., Klaus W. The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev. 1971 Sep;23(3):193–261. [PubMed] [Google Scholar]
  22. Matsui H., Schwartz A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta. 1968 Mar 25;151(3):655–663. doi: 10.1016/0005-2744(68)90013-2. [DOI] [PubMed] [Google Scholar]
  23. Okita G. T. Dissociation of Na+,K+-ATPase inhibition from digitalis inotropy. Fed Proc. 1977 Aug;36(9):2225–2230. [PubMed] [Google Scholar]
  24. Park M. K., Vincenzi F. F. Rate of onset of cardiotonic steroid-induced inotropism: influence of temperature and beat interval. J Pharmacol Exp Ther. 1975 Oct;195(1):140–150. [PubMed] [Google Scholar]
  25. Post R. L., Hegyvary C., Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1972 Oct 25;247(20):6530–6540. [PubMed] [Google Scholar]
  26. Prindle K. H., Jr, Skelton C. L., Epstein S. E., Marcus F. I. Influence of extracellular potassium concentration on myocardial uptake and inotropic effect of tritiated digoxin. Circ Res. 1971 Mar;28(3):337–345. doi: 10.1161/01.res.28.3.337. [DOI] [PubMed] [Google Scholar]
  27. Schwartz A., Allen J. C., Van Winkle W. B., Munson R. Further studies on the correlation between the inotropic action of ouabain and its interaction with the Na+,K+-adenosine triphosphatase: isolated perfused rabbit and cat hearts. J Pharmacol Exp Ther. 1974 Oct;191(1):119–127. [PubMed] [Google Scholar]
  28. Schwartz A., Matsui H., Laughter A. H. Tritiated digoxin binding to (Na+ + K+)-activated adenosine triphosphatase: possible allosteric site. Science. 1968 Apr 19;160(3825):323–325. doi: 10.1126/science.160.3825.323. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES