Abstract
1 Intramural nerve stimulation elicited a powerful relaxation of the longitudinal muscle of the rabbit portal vein in the presence of atropine and guanethidine, but not of the guinea-pig portal vein.
2 Intramural nerve stimulation of the rabbit portal vein produced a 13 fold increase in release of 3H-adenyl compounds after preloading with [3H]-adenosine. About 50% of this release was abolished by guanethidine. All release was abolished by tetrodotoxin. No significant release of radioactive compounds was observed during intramural nerve stimulation of the guinea-pig portal vein in the presence of guanethidine, although there was a 6 fold increase in release of radioactivity in the absence of drugs.
3 Histochemical studies using quinacrine, which binds ATP showed a fine fluorescent nerve plexus, nerve bundles, and ganglion cells in the rabbit portal vein, but not in the guinea-pig portal vein. This plexus was still present after chemical sympathectomy with 6-hydroxydopamine.
4 Adenosine 5′-triphosphate (ATP) relaxed the rabbit portal vein, but usually produced a biphasic response, consisting of a contraction followed by a relaxation, of the guinea-pig portal vein.
5 Prostaglandins E1 and E2 caused contraction of the rabbit portal vein. Indomethacin, a prostaglandin synthesis inhibitor, potentiated the relaxations of the rabbit portal vein produced by both non-adrenergic, non-cholinergic nerve stimulation and ATP.
6 High concentrations of antazoline and phentolamine, which antagonize purinergic responses in the guinea-pig taenia coli, caused a loss of basal tone so that it was not possible to assess their effects on the responses of the portal vein to either non-adrenergic, non-cholinergic nerve stimulation, or ATP.
7 Comparison of the results on the portal vein of the rabbit and guinea-pig provides support for the view that: (i) quinacrine fluorescence can be used to localize purinergic nerves and that the rabbit portal vein is supplied by these nerves; (ii) ATP is released from adrenergic nerve fibres, although, based on histochemical analysis, about 3 to 7 times less than is released from purinergic nerve fibres.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BULBRING E. Measurements of oxygen consumption in smooth muscle. J Physiol. 1953 Oct;122(1):111–134. doi: 10.1113/jphysiol.1953.sp004983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnstock G., Campbell G., Satchell D., Smythe A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol. 1970 Dec;40(4):668–688. doi: 10.1111/j.1476-5381.1970.tb10646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnstock G., Cocks T., Crowe R., Kasakov L. Purinergic innervation of the guinea-pig urinary bladder. Br J Pharmacol. 1978 May;63(1):125–138. doi: 10.1111/j.1476-5381.1978.tb07782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnstock G., Cocks T., Kasakov L., Wong H. K. Direct evidence for ATP release from non-adrenergic, non-cholinergic ("purinergic") nerves in the guinea-pig taenia coli and bladder. Eur J Pharmacol. 1978 May 15;49(2):145–149. doi: 10.1016/0014-2999(78)90070-5. [DOI] [PubMed] [Google Scholar]
- Burnstock G., Cocks T., Paddle B., Staszewska-Barczak J. Evidence that prostaglandin is responsible for the 'rebound contraction' following stimulation of non-adrenergic, non-cholinergic ('purinergic') inhibitory nerves. Eur J Pharmacol. 1975 Apr;31(2):360–362. doi: 10.1016/0014-2999(75)90060-6. [DOI] [PubMed] [Google Scholar]
- Burnstock G. Comparative studies of purinergic nerves. J Exp Zool. 1975 Oct;194(1):103–133. doi: 10.1002/jez.1401940108. [DOI] [PubMed] [Google Scholar]
- Burnstock G. Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev. 1969 Dec;21(4):247–324. [PubMed] [Google Scholar]
- Burnstock G. Neural nomenclature. Nature. 1971 Jan 22;229(5282):282–283. doi: 10.1038/229282d0. [DOI] [PubMed] [Google Scholar]
- Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sep;24(3):509–581. [PubMed] [Google Scholar]
- Ellison J. R., Barr H. J. Quinacrine fluorescence of specific chromosome regions. Late replication and high A: T content in Samoaia leonensis. Chromosoma. 1972;36(4):375–390. doi: 10.1007/BF00336794. [DOI] [PubMed] [Google Scholar]
- Honig C. R., Frierson J. L. Neurons intrinsic to arterioles initiate postcontraction vasodilation. Am J Physiol. 1976 Feb;230(2):493–507. doi: 10.1152/ajplegacy.1976.230.2.493. [DOI] [PubMed] [Google Scholar]
- Hughes J., Vane J. R. Relaxations of the isolated portal vein of the rabbit induced by nicotine and electrical stimulation. Br J Pharmacol. 1970 Jul;39(3):476–489. doi: 10.1111/j.1476-5381.1970.tb10356.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IRVIN J. L., IRVIN E. M. The interaction of quinacrine with adenine nucleotides. J Biol Chem. 1954 Sep;210(1):45–56. [PubMed] [Google Scholar]
- KARNOVSKY M. J., ROOTS L. A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES. J Histochem Cytochem. 1964 Mar;12:219–221. doi: 10.1177/12.3.219. [DOI] [PubMed] [Google Scholar]
- Kao C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol Rev. 1966 Jun;18(2):997–1049. [PubMed] [Google Scholar]
- Langer S. Z., Pinto J. E. Possible involvement of a transmitter different from norepinephrine in the residual responses to nerve stimulation of the cat nictitating membrane after pretreatment with reserpine. J Pharmacol Exp Ther. 1976 Mar;196(3):697–713. [PubMed] [Google Scholar]
- Needleman P., Minkes M. S., Douglas J. R., Jr Stimulation of prostaglandin biosynthesis by adenine nucleotides. Profile of prostaglandin release by perfused organs. Circ Res. 1974 Apr;34(4):455–460. doi: 10.1161/01.res.34.4.455. [DOI] [PubMed] [Google Scholar]
- Olson L., Alund M., Norberg K. A. Fluorescence-microscopical demonstration of a population of gastro-intestinal nerve fibres with a selective affinity for quinacrine. Cell Tissue Res. 1976 Sep 1;171(4):407–423. doi: 10.1007/BF00220234. [DOI] [PubMed] [Google Scholar]
- Rutherford A., Burnstock G. Neuronal and non-neuronal components in the overflow of labelled adenyl compounds from guinea-pig taenia coli. Eur J Pharmacol. 1978 Mar 15;48(2):195–202. doi: 10.1016/0014-2999(78)90328-x. [DOI] [PubMed] [Google Scholar]
- Satchell D. G., Lynch A., Bourke P. M., Burnstock G. Potentiation of the effects of exogenously applied ATP and purinergic nerve stimulation on the guinea-pig taenia coli by dipyridamole and hexobendine. Eur J Pharmacol. 1972 Sep;19(3):343–350. doi: 10.1016/0014-2999(72)90100-8. [DOI] [PubMed] [Google Scholar]
- Satchell D., Burnstock G., Dann P. Antagonism of the effects of purinergic nerve stimulation and exogenously applied ATP on the guinea-pig taenia coli by 2-substituted imidazolines and related compounds. Eur J Pharmacol. 1973 Sep;23(3):264–269. doi: 10.1016/0014-2999(73)90093-9. [DOI] [PubMed] [Google Scholar]
- Su C., Bevan J. A., Burnstock G. [3H]adenosine triphosphate: release during stimulation of enteric nerves. Science. 1971 Jul 23;173(3994):336–338. doi: 10.1126/science.173.3994.336. [DOI] [PubMed] [Google Scholar]
- Su C. Neurogenic release of purine compounds in blood vessels. J Pharmacol Exp Ther. 1975 Oct;195(1):159–166. [PubMed] [Google Scholar]
- Westfall D. P., Stitzel R. E., Rowe J. N. The postjunctional effects and neural release of purine compounds in the guinea-pig vas deferens. Eur J Pharmacol. 1978 Jul 1;50(1):27–38. doi: 10.1016/0014-2999(78)90250-9. [DOI] [PubMed] [Google Scholar]