Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1979 Mar;65(3):501–510. doi: 10.1111/j.1476-5381.1979.tb07858.x

Potentiation of responses to monoamines by antidepressants after destruction of monoamine afferents

RSG Jones, MHT Roberts
PMCID: PMC1668645  PMID: 311665

Abstract

1 Stereotaxic lesioning and microiontophoretic techniques were used to study the effects of lesions of the medial forebrain bundle (MFB) on the potentiation by antidepressant drugs of responses to monoamines of cortical neurones.

2 Active uptake of noradrenaline (NA) and 5 hydroxytryptamine (5-HT) by synaptosomes from the motor and somatosensory cortex was reduced to approximately 20%, 10 to 14 days following lesion of the MFB in rats.

3 Unilateral lesions of the MFB caused changes in responsiveness of neurones to NA and 5-HT, applied by iontophoresis, in the cortex ipsilateral to the lesion. Excitatory responses to both amines were observed less frequently and depression was the predominant response. Excitatory responses on the lesioned side were significantly smaller than on the unlesioned side, but the size of depressant responses was unaltered.

4 Viloxazine strongly potentiated responses of cortical neurones to NA and 5-HT on both sides of the brain of MFB-lesioned rats. There were no significant differences in the potentiation of responses to monoamines on the lesioned or unlesioned sides of the brain.

5 Desipramine potentiated responses to NA of neurones in the cortex ipsilateral to MFB lesions.

6 Chlorimipramine potentiated responses to 5-HT of neurones in the cortex ipsilateral to MFB lesions.

7 It is concluded that antidepressants can potentiate responses to monoamines despite a profound reduction in presynaptic terminals. The potentiation is unlikely to be the result of blockade of monoamine uptake into presynaptic terminals, and is probably a postsynaptic effect of the antidepressant drugs.

Full text

PDF
501

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajanian G. K., Rosecrans J. A., Sheard M. H. Serotonin: release in the forebrain by stimulation of midbrain raphé. Science. 1967 Apr 21;156(3773):402–403. doi: 10.1126/science.156.3773.402. [DOI] [PubMed] [Google Scholar]
  2. Arbuthnott G. W., Crow T. J., Fuxe K., Olson L., Ungerstedt U. Depletion of catecholamines in vivo induced by electrical stimulation of central monoamine pathways. Brain Res. 1970 Dec 18;24(3):471–483. doi: 10.1016/0006-8993(70)90186-1. [DOI] [PubMed] [Google Scholar]
  3. Bevan P., Bradshaw C. M., Szabadi E. Effects of desipramine on neuronal responses to dopamine, noradrenaline, 5-hydroxytryptamine and acetylcholine in the caudate nucleus of the rat. Br J Pharmacol. 1975 Jul;54(3):285–293. doi: 10.1111/j.1476-5381.1975.tb07567.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevan P., Bradshaw C. M., Szabadi E. Effects of iprindole on responses of single cortical and caudate neurones to monoamines and acetylcholine. Br J Pharmacol. 1975 Sep;55(1):17–25. doi: 10.1111/j.1476-5381.1975.tb07605.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bevan P., Bradshaw C. M., Szabadi E. Potentiation by desipramine of neuronal responses to mescaline. Br J Pharmacol. 1976 May;57(1):152–154. doi: 10.1111/j.1476-5381.1976.tb07666.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bevan P., Bradshaw C. M., Szabadi E. Proceedings: Potentiation and antagonism of neuronal responses to monoamines by methysergide and sotalol. Br J Pharmacol. 1974 Mar;50(3):445P–445P. [PMC free article] [PubMed] [Google Scholar]
  7. Bevan P., Bradshaw C. M., Szabadi E. The effect of tricyclic antidepressants on cholinergic responses of single cortical neurones. Br J Pharmacol. 1975 Jan;53(1):29–36. doi: 10.1111/j.1476-5381.1975.tb07326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bird S. J., Aghajanian G. K. Denervation supersensitivity in the cholinergic septo-hippocampal pathway: a microiontophoretic study. Brain Res. 1975 Dec 19;100(2):355–370. doi: 10.1016/0006-8993(75)90488-6. [DOI] [PubMed] [Google Scholar]
  9. Bradshaw C. M., Roberts M. H., Szabadi E. Effects of imipramine and desipramine on responses of single cortical neurones to noradrenaline and 5-hydroxytryptamine. Br J Pharmacol. 1974 Nov;52(3):349–358. doi: 10.1111/j.1476-5381.1974.tb08602.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Collard K. J. The effect of lithium on the increase in forebrain 5-hydroxyindoleacetic acid produced by raphe stimulation. Br J Pharmacol. 1978 Jan;62(1):137–142. doi: 10.1111/j.1476-5381.1978.tb07016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coppen A. Indoleamines and affective disorders. J Psychiatr Res. 1972 Sep;9(3):163–171. doi: 10.1016/0022-3956(72)90018-0. [DOI] [PubMed] [Google Scholar]
  12. Coyle J. T., Snyder S. H. Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J Pharmacol Exp Ther. 1969 Dec;170(2):221–231. [PubMed] [Google Scholar]
  13. Feltz P., De Champlain J. Enhanced sensitivity of caudate neurones to microiontophoretic injections of dopamine in 6-hydroxydopamine treated cats. Brain Res. 1972 Aug 25;43(2):601–605. doi: 10.1016/0006-8993(72)90414-3. [DOI] [PubMed] [Google Scholar]
  14. Fuxe K., Jonsson G. Further mapping of central 5-hydroxytryptamine neurons: studies with the neurotoxic dihydroxytryptamines. Adv Biochem Psychopharmacol. 1974;10:1–12. [PubMed] [Google Scholar]
  15. Gluckman M. I., Baum T. The pharmacology of iprindole, a new antidepressant. Psychopharmacologia. 1969;15(3):169–185. doi: 10.1007/BF00411167. [DOI] [PubMed] [Google Scholar]
  16. Iversen L. L. Uptake mechanisms for neurotransmitter amines. Biochem Pharmacol. 1974 Jul 15;23(14):1927–1935. doi: 10.1016/0006-2952(74)90250-0. [DOI] [PubMed] [Google Scholar]
  17. Jones R. S. Noradrenaline sensitive adenylate cyclase in rat cerebral cortex: effects of antidepressant drugs. Neuropharmacology. 1978 Sep;17(9):771–774. doi: 10.1016/0028-3908(78)90092-8. [DOI] [PubMed] [Google Scholar]
  18. Jones R. S., Roberts M. H. Effects of viloxazine on cortical neurone responses to monoamines and acetylcholine [proceedings]. Br J Pharmacol. 1977 Mar;59(3):460P–460P. [PMC free article] [PubMed] [Google Scholar]
  19. KUROKAWA M., SAKAMOTO T., KATO M. A RAPID ISOLATION OF NERVE-ENDING PARTICLES FROM BRAIN. Biochim Biophys Acta. 1965 Jan 25;94:307–309. doi: 10.1016/0926-6585(65)90036-1. [DOI] [PubMed] [Google Scholar]
  20. Katz R. I., Chase T. N. Neurohumoral mechanisms in the brain slice. Adv Pharmacol Chemother. 1970;8:1–30. doi: 10.1016/s1054-3589(08)60592-x. [DOI] [PubMed] [Google Scholar]
  21. Kuhar M. J. Neurotransmitter uptake: a tool in identifying neurotransmitter-specific pathways. Life Sci. 1973 Dec 16;13(12):1623–1634. doi: 10.1016/0024-3205(73)90110-0. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Lippman W., Pugsley T. A. Effects of viloxazine, an antidepressant agent, on biogenic amine uptake mechanisms and related activities. Can J Physiol Pharmacol. 1976 Aug;54(4):494–509. doi: 10.1139/y76-069. [DOI] [PubMed] [Google Scholar]
  24. Ross S. B., Renyi A. L. Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur J Pharmacol. 1969 Sep;7(3):270–277. doi: 10.1016/0014-2999(69)90091-0. [DOI] [PubMed] [Google Scholar]
  25. Ross S. B., Renyi A. L. Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents. Eur J Pharmacol. 1967 Dec;2(3):181–186. doi: 10.1016/0014-2999(67)90084-2. [DOI] [PubMed] [Google Scholar]
  26. Schildkraut J. J. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965 Nov;122(5):509–522. doi: 10.1176/ajp.122.5.509. [DOI] [PubMed] [Google Scholar]
  27. Shields P. J., Eccleston D. Effects of electrical stimulation of rat midbrain on 5-hydroxytryptamine synthesis as determined by a sensitive radioisotope method. J Neurochem. 1972 Feb;19(2):265–272. doi: 10.1111/j.1471-4159.1972.tb01336.x. [DOI] [PubMed] [Google Scholar]
  28. Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971;367:1–48. doi: 10.1111/j.1365-201x.1971.tb10998.x. [DOI] [PubMed] [Google Scholar]
  29. Wright D. M., Roberts M. H. Supersensitivity to a substance P analogue following dorsal root section. Life Sci. 1978 Jan;22(1):19–24. doi: 10.1016/0024-3205(78)90406-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES