Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):8–12. doi: 10.1128/aem.61.1.8-12.1995

Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200.

F Picardal 1, R G Arnold 1, B B Huey 1
PMCID: PMC167256  PMID: 7887629

Abstract

Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.

Full Text

The Full Text of this article is available as a PDF (210.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian N. R., Suflita J. M. Reductive dehalogenation of a nitrogen heterocyclic herbicide in anoxic aquifer slurries. Appl Environ Microbiol. 1990 Jan;56(1):292–294. doi: 10.1128/aem.56.1.292-294.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnold R. G., DiChristina T. J., Hoffmann M. R. Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 ("Pseudomonas ferrireductans") Appl Environ Microbiol. 1986 Aug;52(2):281–289. doi: 10.1128/aem.52.2.281-289.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnold R. G., Hoffmann M. R., Dichristina T. J., Picardal F. W. Regulation of Dissimilatory Fe(III) Reduction Activity in Shewanella putrefaciens. Appl Environ Microbiol. 1990 Sep;56(9):2811–2817. doi: 10.1128/aem.56.9.2811-2817.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bagley D. M., Gossett J. M. Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures. Appl Environ Microbiol. 1990 Aug;56(8):2511–2516. doi: 10.1128/aem.56.8.2511-2516.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Criddle C. S., DeWitt J. T., McCarty P. L. Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12. Appl Environ Microbiol. 1990 Nov;56(11):3247–3254. doi: 10.1128/aem.56.11.3247-3254.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeWeerd K. A., Concannon F., Suflita J. M. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl Environ Microbiol. 1991 Jul;57(7):1929–1934. doi: 10.1128/aem.57.7.1929-1934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DiChristina T. J. Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J Bacteriol. 1992 Mar;174(6):1891–1896. doi: 10.1128/jb.174.6.1891-1896.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gibson S. A., Suflita J. M. Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic Acid in samples from a methanogenic aquifer: stimulation by short-chain organic acids and alcohols. Appl Environ Microbiol. 1990 Jun;56(6):1825–1832. doi: 10.1128/aem.56.6.1825-1832.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibson S. A., Suflita J. M. Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl Environ Microbiol. 1986 Oct;52(4):681–688. doi: 10.1128/aem.52.4.681-688.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lewis T. A., Crawford R. L. Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC. Appl Environ Microbiol. 1993 May;59(5):1635–1641. doi: 10.1128/aem.59.5.1635-1641.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Linkfield T. G., Tiedje J. M. Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. J Ind Microbiol. 1990 Jan;5(1):9–15. doi: 10.1007/BF01569601. [DOI] [PubMed] [Google Scholar]
  13. Myers C. R., Nealson K. H. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J Bacteriol. 1990 Nov;172(11):6232–6238. doi: 10.1128/jb.172.11.6232-6238.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nies L., Vogel T. M. Effects of organic substrates on dechlorination of aroclor 1242 in anaerobic sediments. Appl Environ Microbiol. 1990 Sep;56(9):2612–2617. doi: 10.1128/aem.56.9.2612-2617.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Obuekwe C. O., Westlake D. W. Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonas sp. isolated from crude oil. Can J Microbiol. 1982 Aug;28(8):989–992. doi: 10.1139/m82-148. [DOI] [PubMed] [Google Scholar]
  16. Picardal F. W., Arnold R. G., Couch H., Little A. M., Smith M. E. Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200. Appl Environ Microbiol. 1993 Nov;59(11):3763–3770. doi: 10.1128/aem.59.11.3763-3770.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Samuelsson M. O. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens. Appl Environ Microbiol. 1985 Oct;50(4):812–815. doi: 10.1128/aem.50.4.812-815.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tatara G. M., Dybas M. J., Criddle C. S. Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC. Appl Environ Microbiol. 1993 Jul;59(7):2126–2131. doi: 10.1128/aem.59.7.2126-2131.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zumft W. G. The biological role of nitric oxide in bacteria. Arch Microbiol. 1993;160(4):253–264. doi: 10.1007/BF00292074. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES