Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):34–39. doi: 10.1128/aem.61.1.34-39.1995

Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Alcaligenes eutrophus and recombinant Escherichia coli.

S K Hahn 1, Y K Chang 1, S Y Lee 1
PMCID: PMC167258  PMID: 7887612

Abstract

We studied recovery of poly(3-hydroxybutyric acid) (PHB) from Alcaligenes eutrophus and a recombinant Escherichia coli strain harboring the A. eutrophus poly(3-hydroxyalkanoic acid) biosynthesis genes. The amount of PHB degraded to a lower-molecular-weight compound in A. eutrophus during the recovery process was significant when sodium hypochlorite was used, but the amount degraded in the recombinant E. coli strain was negligible. However, there was no difference between the two microorganisms in the patterns of molecular weight change when PHB was recovered by using dispersions of a sodium hypochlorite solution and chloroform. To understand these findings, we examined purified PHB and lyophilized cells containing PHB by using a differential scanning calorimeter, a thermogravimetric analyzer, and nuclear magnetic resonance. The results of our analysis of lyophilized whole cells containing PHB with the differential scanning calorimeter suggested that the PHB granules in the recombinant E. coli strain were crystalline, while most of the PHB in A. eutrophus was in a mobile amorphous state. The stability of the native PHB in the recombinant E. coli strain during sodium hypochlorite treatment seemed to be due to its crystalline morphology. In addition, as determined by the thermogravimetric analyzer study, lyophilized cell powder of the recombinant E. coli strain containing PHB exhibited greater thermal stability than purified PHB obtained by chloroform extraction. The PHB preparations extracted from the two microorganisms had identical polymer properties.

Full Text

The Full Text of this article is available as a PDF (211.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson A. J., Dawes E. A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev. 1990 Dec;54(4):450–472. doi: 10.1128/mr.54.4.450-472.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnard G. N., Sanders J. K. The poly-beta-hydroxybutyrate granule in vivo. A new insight based on NMR spectroscopy of whole cells. J Biol Chem. 1989 Feb 25;264(6):3286–3291. [PubMed] [Google Scholar]
  3. Bayer-Berger M. M., Ravussin P., Fankhauser H., Freeman J. Effect of three pretreatment techniques on hemodynamic and CSFP responses to skull-pin head-holder application during thiopentone/isoflurane or propofol anesthesia. J Neurosurg Anesthesiol. 1989 Sep;1(3):227–232. doi: 10.1097/00008506-198909000-00004. [DOI] [PubMed] [Google Scholar]
  4. Brandl H., Gross R. A., Lenz R. W., Fuller R. C. Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv Biochem Eng Biotechnol. 1990;41:77–93. doi: 10.1007/BFb0010232. [DOI] [PubMed] [Google Scholar]
  5. Dawes E. A., Senior P. J. The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol. 1973;10:135–266. doi: 10.1016/s0065-2911(08)60088-0. [DOI] [PubMed] [Google Scholar]
  6. Dunlop W. F., Robards A. W. Ultrastructural study of poly- -hydroxybutyrate granules from Bacillus cereus. J Bacteriol. 1973 Jun;114(3):1271–1280. doi: 10.1128/jb.114.3.1271-1280.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ellar D., Lundgren D. G., Okamura K., Marchessault R. H. Morphology of poly-beta-hydroxybutyrate granules. J Mol Biol. 1968 Aug 14;35(3):489–502. doi: 10.1016/s0022-2836(68)80009-9. [DOI] [PubMed] [Google Scholar]
  8. Harrison S. T., Chase H. A., Dennis J. S. The disruption of Alcaligenes eutrophus by high pressure homogenisation: key factors involved in the process. Bioseparation. 1991;2(3):155–166. [PubMed] [Google Scholar]
  9. Huisman G. W., de Leeuw O., Eggink G., Witholt B. Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol. 1989 Aug;55(8):1949–1954. doi: 10.1128/aem.55.8.1949-1954.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. LUNDGREN D. G., ALPER R., SCHNAITMAN C., MARCHESSAULT R. H. CHARACTERIZATION OF POLY-BETA-HYDROXYBUTYRATE EXTRACTED FROM DIFFERENT BACTERIA. J Bacteriol. 1965 Jan;89:245–251. doi: 10.1128/jb.89.1.245-251.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee S. Y., Chang H. N., Chang Y. K. Production of poly(beta-hydroxybutyric acid) by recombinant Escherichia coli. Ann N Y Acad Sci. 1994 May 2;721:43–53. doi: 10.1111/j.1749-6632.1994.tb47375.x. [DOI] [PubMed] [Google Scholar]
  13. Lee S. Y., Yim K. S., Chang H. N., Chang Y. K. Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli. J Biotechnol. 1994 Feb 14;32(2):203–211. doi: 10.1016/0168-1656(94)90183-x. [DOI] [PubMed] [Google Scholar]
  14. MERRICK J. M., DOUDOROFF M. DEPOLYMERIZATION OF POLY-BETA-HYDROXYBUTYRATE BY INTRACELLULAR ENZYME SYSTEM. J Bacteriol. 1964 Jul;88:60–71. doi: 10.1128/jb.88.1.60-71.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nuti M. P., De Bertoldi M., Lepidi A. A. Influence of phenylacetic acid on poly- -hydroxybutyrate (PHB) polymerization and cell elongation in Azotobacter chroococcum Beij. Can J Microbiol. 1972 Aug;18(8):1257–1261. doi: 10.1139/m72-194. [DOI] [PubMed] [Google Scholar]
  16. Peoples O. P., Sinskey A. J. Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem. 1989 Sep 15;264(26):15298–15303. [PubMed] [Google Scholar]
  17. Reusch R. N. Biological complexes of poly-beta-hydroxybutyrate. FEMS Microbiol Rev. 1992 Dec;9(2-4):119–129. doi: 10.1111/j.1574-6968.1992.tb05829.x. [DOI] [PubMed] [Google Scholar]
  18. Reusch R., Hiske T., Sadoff H., Harris R., Beveridge T. Cellular incorporation of poly-beta-hydroxybutyrate into plasma membranes of Escherichia coli and Azotobacter vinelandii alters native membrane structure. Can J Microbiol. 1987 May;33(5):435–444. doi: 10.1139/m87-073. [DOI] [PubMed] [Google Scholar]
  19. Schubert P., Steinbüchel A., Schlegel H. G. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol. 1988 Dec;170(12):5837–5847. doi: 10.1128/jb.170.12.5837-5847.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Slater S. C., Voige W. H., Dennis D. E. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol. 1988 Oct;170(10):4431–4436. doi: 10.1128/jb.170.10.4431-4436.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WILLIAMSON D. H., WILKINSON J. F. The isolation and estimation of the poly-beta-hydroxybutyrate inclusions of Bacillus species. J Gen Microbiol. 1958 Aug;19(1):198–209. doi: 10.1099/00221287-19-1-198. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES