Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):40–43. doi: 10.1128/aem.61.1.40-43.1995

Sequence variability in homologs of the aflatoxin pathway gene aflR distinguishes species in Aspergillus section Flavi.

P K Chang 1, D Bhatnagar 1, T E Cleveland 1, J W Bennett 1
PMCID: PMC167259  PMID: 7887625

Abstract

The Aspergillus parasiticus aflR gene, a gene that may be involved in the regulation of aflatoxin biosynthesis, encodes a putative zinc finger DNA-binding protein. PCR and sequencing were used to examine the presence of aflR homologs in other members of Aspergillus Section Flavi. The predicted amino acid sequences indicated that the same zinc finger domain, CTSCASSKVRCTKEKPACARCIERGLAC, was present in all of the Aspergillus sojae, Aspergillus flavus, and Aspergillus parasiticus isolates examined and in some of the Aspergillus oryzae isolates examined. Unique base substitutions and a specific base deletion were found in the 5' untranslated and zinc finger region; these differences provided distinct fingerprints. A. oryzae and A. flavus had the T-G-A-A-X-C fingerprint, whereas A. parasiticus and A sojae had the C-C-C-C-C-T fingerprint at the corresponding positions. Specific nucleotides at positions -90 (C or T) and -132 (G or A) further distinguished A. flavus from A. oryzae and A. parasiticus from A. sojae, respectively. A sojae ATCC 9362, which was previously designated A. oryzae NRRL 1988, was determined to be a A. sojae strain on the basis of the presence of the characteristic fingerprint, A-C-C-C-C-C-C-T. The DNAs of other members of Aspergillus Section Flavi, such as Aspergillus nomius and Aspergillus tamarii, and some isolates of A. oryzae appeared to exhibit low levels of similarity to the A. parasiticus aflR gene since low amounts of PCR products or no PCR products were obtained when DNAs from these strains were used.

Full Text

The Full Text of this article is available as a PDF (357.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berka R. M., Dunn-Coleman N., Ward M. Industrial enzymes from Aspergillus species. Biotechnology. 1992;23:155–202. [PubMed] [Google Scholar]
  2. Chang P. K., Cary J. W., Bhatnagar D., Cleveland T. E., Bennett J. W., Linz J. E., Woloshuk C. P., Payne G. A. Cloning of the Aspergillus parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthesis. Appl Environ Microbiol. 1993 Oct;59(10):3273–3279. doi: 10.1128/aem.59.10.3273-3279.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang P. K., Skory C. D., Linz J. E. Cloning of a gene associated with aflatoxin B1 biosynthesis in Aspergillus parasiticus. Curr Genet. 1992 Mar;21(3):231–233. doi: 10.1007/BF00336846. [DOI] [PubMed] [Google Scholar]
  4. Dorner J. W., Cole R. J., Diener U. L. The relationship of Aspergillus flavus and Aspergillus parasiticus with reference to production of aflatoxins and cyclopiazonic acid. Mycopathologia. 1984 Aug 30;87(1-2):13–15. doi: 10.1007/BF00436617. [DOI] [PubMed] [Google Scholar]
  5. Hara S., Kitamoto K., Gomi K. New developments in fermented beverages and foods with Aspergillus. Biotechnology. 1992;23:133–153. [PubMed] [Google Scholar]
  6. Jelinek C. F., Pohland A. E., Wood G. E. Worldwide occurrence of mycotoxins in foods and feeds--an update. J Assoc Off Anal Chem. 1989 Mar-Apr;72(2):223–230. [PubMed] [Google Scholar]
  7. Johnston M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev. 1987 Dec;51(4):458–476. doi: 10.1128/mr.51.4.458-476.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keller N. P., Kantz N. J., Adams T. H. Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin. Appl Environ Microbiol. 1994 May;60(5):1444–1450. doi: 10.1128/aem.60.5.1444-1450.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kurtzman C. P., Horn B. W., Hesseltine C. W. Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie Van Leeuwenhoek. 1987;53(3):147–158. doi: 10.1007/BF00393843. [DOI] [PubMed] [Google Scholar]
  10. Moody S. F., Tyler B. M. Restriction enzyme analysis of mitochondrial DNA of the Aspergillus flavus group: A. flavus, A. parasiticus, and A. nomius. Appl Environ Microbiol. 1990 Aug;56(8):2441–2452. doi: 10.1128/aem.56.8.2441-2452.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moody S. F., Tyler B. M. Use of nuclear DNA restriction fragment length polymorphisms to analyze the diversity of the Aspergillus flavus group: A. flavus, A. parasiticus, and A. nomius. Appl Environ Microbiol. 1990 Aug;56(8):2453–2461. doi: 10.1128/aem.56.8.2453-2461.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Payne G. A., Nystrom G. J., Bhatnagar D., Cleveland T. E., Woloshuk C. P. Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl Environ Microbiol. 1993 Jan;59(1):156–162. doi: 10.1128/aem.59.1.156-162.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pitt J. I., Hocking A. D., Bhudhasamai K., Miscamble B. F., Wheeler K. A., Tanboon-Ek P. The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. Int J Food Microbiol. 1993 Dec;20(4):211–226. doi: 10.1016/0168-1605(93)90166-e. [DOI] [PubMed] [Google Scholar]
  14. Rabie C. J., Lubben A., Steyn M. Production of sterigmatocystin by Aspergillus versicolor and Bipolaris sorokiniana on semisynthetic liquid and solid media. Appl Environ Microbiol. 1976 Aug;32(2):206–208. doi: 10.1128/aem.32.2.206-208.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Skory C. D., Chang P. K., Cary J., Linz J. E. Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. Appl Environ Microbiol. 1992 Nov;58(11):3527–3537. doi: 10.1128/aem.58.11.3527-3537.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Woloshuk C. P., Foutz K. R., Brewer J. F., Bhatnagar D., Cleveland T. E., Payne G. A. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol. 1994 Jul;60(7):2408–2414. doi: 10.1128/aem.60.7.2408-2414.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yu J., Cary J. W., Bhatnagar D., Cleveland T. E., Keller N. P., Chu F. S. Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis. Appl Environ Microbiol. 1993 Nov;59(11):3564–3571. doi: 10.1128/aem.59.11.3564-3571.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES