Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):74–78. doi: 10.1128/aem.61.1.74-78.1995

Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799.

G E Colón 1, M S Jetten 1, T T Nguyen 1, M E Gubler 1, M T Follettie 1, A J Sinskey 1, G Stephanopoulos 1
PMCID: PMC167261  PMID: 7887627

Abstract

Amplification of the operon homdr-thrB encoding a feedback-insensitive homoserine dehydrogenase and a wild-type homoserine kinase in a Corynebacterium lactofermentum lysine-producing strain resulted in both homoserine and threonine accumulation, with some residual lysine production. A plasmid enabling separate transcriptional control of each gene was constructed to determine the effect of various enzyme activity ratios on metabolite accumulation. By increasing the activity of homoserine kinase relative to homoserine dehydrogenase activity, homoserine accumulation in the medium was essentially eliminated and the final threonine titer was increased by about 120%. Furthermore, a fortuitous result of the cloning strategy was an unexplained increase in homoserine dehydrogenase activity. This resulted in a further decrease in lysine production along with a concomitant increase in threonine accumulation.

Full Text

The Full Text of this article is available as a PDF (189.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer J. A., Solow-Cordero D. E., Sinskey A. J. A C-terminal deletion in Corynebacterium glutamicum homoserine dehydrogenase abolishes allosteric inhibition by L-threonine. Gene. 1991 Oct 30;107(1):53–59. doi: 10.1016/0378-1119(91)90296-n. [DOI] [PubMed] [Google Scholar]
  2. BLACK S., WRIGHT N. G. Aspartic beta-semialdehyde dehydrogenase and aspartic beta-semialdehyde. J Biol Chem. 1955 Mar;213(1):39–50. [PubMed] [Google Scholar]
  3. Bell S. C., Turner J. M. Bacterial catabolism of threonine. Threonine degradation initiated by L-threonine-NAD+ oxidoreductase. Biochem J. 1976 May 15;156(2):449–458. doi: 10.1042/bj1560449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birnboim H. C. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 1983;100:243–255. doi: 10.1016/0076-6879(83)00059-2. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Eikmanns B. J., Metzger M., Reinscheid D., Kircher M., Sahm H. Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol. 1991 Feb;34(5):617–622. doi: 10.1007/BF00167910. [DOI] [PubMed] [Google Scholar]
  7. Follettie M. T., Peoples O. P., Agoropoulou C., Sinskey A. J. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J Bacteriol. 1993 Jul;175(13):4096–4103. doi: 10.1128/jb.175.13.4096-4103.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Han K. S., Archer J. A., Sinskey A. J. The molecular structure of the Corynebacterium glutamicum threonine synthase gene. Mol Microbiol. 1990 Oct;4(10):1693–1702. doi: 10.1111/j.1365-2958.1990.tb00546.x. [DOI] [PubMed] [Google Scholar]
  9. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  10. Liebl W., Ehrmann M., Ludwig W., Schleifer K. H. Transfer of Brevibacterium divaricatum DSM 20297T, "Brevibacterium flavum" DSM 20411, "Brevibacterium lactofermentum" DSM 20412 and DSM 1412, and Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol. 1991 Apr;41(2):255–260. doi: 10.1099/00207713-41-2-255. [DOI] [PubMed] [Google Scholar]
  11. Mavrovouniotis M. L. Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem. 1991 Aug 5;266(22):14440–14445. [PubMed] [Google Scholar]
  12. Miyajima R., Otsuka S., Shiio I. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. I. Inhibition by amino acids of the enzymes in threonine biosynthesis. J Biochem. 1968 Feb;63(2):139–148. doi: 10.1093/oxfordjournals.jbchem.a128754. [DOI] [PubMed] [Google Scholar]
  13. Miyajima R., Shiio I. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. VI. Effects of isoleucine and valine on threonine dehydratase activity and its formation. J Biochem. 1972 Jun;71(6):951–960. doi: 10.1093/oxfordjournals.jbchem.a129866. [DOI] [PubMed] [Google Scholar]
  14. Peoples O. P., Liebl W., Bodis M., Maeng P. J., Follettie M. T., Archer J. A., Sinskey A. J. Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon. Mol Microbiol. 1988 Jan;2(1):63–72. doi: 10.1111/j.1365-2958.1988.tb00007.x. [DOI] [PubMed] [Google Scholar]
  15. Reinscheid D. J., Kronemeyer W., Eggeling L., Eikmanns B. J., Sahm H. Stable Expression of hom-1-thrB in Corynebacterium glutamicum and Its Effect on the Carbon Flux to Threonine and Related Amino Acids. Appl Environ Microbiol. 1994 Jan;60(1):126–132. doi: 10.1128/aem.60.1.126-132.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Théze J., Kleidman L., St Girons I. Homoserine kinase from Escherichia coli K-12: properties, inhibition by L-threonine, and regulation of biosynthesis. J Bacteriol. 1974 May;118(2):577–581. doi: 10.1128/jb.118.2.577-581.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WORMSER E. H., PARDEE A. B. Regulation of threonine biosynthesis in Escherichia coli. Arch Biochem Biophys. 1958 Dec;78(2):416–432. doi: 10.1016/0003-9861(58)90367-9. [DOI] [PubMed] [Google Scholar]
  19. Yoshihama M., Higashiro K., Rao E. A., Akedo M., Shanabruch W. G., Follettie M. T., Walker G. C., Sinskey A. J. Cloning vector system for Corynebacterium glutamicum. J Bacteriol. 1985 May;162(2):591–597. doi: 10.1128/jb.162.2.591-597.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. de Boer H. A., Comstock L. J., Vasser M. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A. 1983 Jan;80(1):21–25. doi: 10.1073/pnas.80.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES