Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):159–164. doi: 10.1128/aem.61.1.159-164.1995

Expression and in vitro assembly of recombinant glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus.

J Diruggiero 1, F T Robb 1
PMCID: PMC167271  PMID: 7887598

Abstract

The gdhA gene, encoding the hexameric glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon Pyrococcus furiosus, was expressed in Escherichia coli by using the pET11-d system. The recombinant GDH was soluble and constituted 15% of the E. coli cell extract. The N-terminal amino acid sequence of the recombinant protein was identical to the sequence of the P. furiosus enzyme, except for the presence of an initial methionine which was absent from the enzyme purified from P. furiosus. By molecular exclusion chromatography we showed that the recombinant GDH was composed of equal amounts of monomeric and hexameric forms. Heat treatment of the recombinant protein triggered in vitro assembly of inactive monomers into hexamers, resulting in increased GDH activity. The specific activity of the recombinant enzyme, purified by heat treatment and affinity chromatography, was equivalent to that of the native enzyme from P. furiosus. The recombinant GDH displayed a slightly lower level of thermostability, with a half-life of 8 h at 100 degrees C, compared with 10.5 h for the enzyme purified from P. furiosus.

Full Text

The Full Text of this article is available as a PDF (266.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W. Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu Rev Microbiol. 1993;47:627–658. doi: 10.1146/annurev.mi.47.100193.003211. [DOI] [PubMed] [Google Scholar]
  2. Baker P. J., Britton K. L., Engel P. C., Farrants G. W., Lilley K. S., Rice D. W., Stillman T. J. Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins. 1992 Jan;12(1):75–86. doi: 10.1002/prot.340120109. [DOI] [PubMed] [Google Scholar]
  3. Benachenhou-Lahfa N., Forterre P., Labedan B. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J Mol Evol. 1993 Apr;36(4):335–346. doi: 10.1007/BF00182181. [DOI] [PubMed] [Google Scholar]
  4. Blake P. R., Park J. B., Zhou Z. H., Hare D. R., Adams M. W., Summers M. F. Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1992 Nov;1(11):1508–1521. doi: 10.1002/pro.5560011112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Consalvi V., Chiaraluce R., Politi L., Pasquo A., De Rosa M., Scandurra R. Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus: studies on thermal and guanidine-dependent inactivation. Biochim Biophys Acta. 1993 Oct 6;1202(2):207–215. doi: 10.1016/0167-4838(93)90006-d. [DOI] [PubMed] [Google Scholar]
  6. Consalvi V., Chiaraluce R., Politi L., Vaccaro R., De Rosa M., Scandurra R. Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur J Biochem. 1991 Dec 18;202(3):1189–1196. doi: 10.1111/j.1432-1033.1991.tb16489.x. [DOI] [PubMed] [Google Scholar]
  7. DiRuggiero J., Robb F. T., Jagus R., Klump H. H., Borges K. M., Kessel M., Mai X., Adams M. W. Characterization, cloning, and in vitro expression of the extremely thermostable glutamate dehydrogenase from the hyperthermophilic Archaeon, ES4. J Biol Chem. 1993 Aug 25;268(24):17767–17774. [PubMed] [Google Scholar]
  8. Eggen R. I., Geerling A. C., Waldkötter K., Antranikian G., de Vos W. M. The glutamate dehydrogenase-encoding gene of the hyperthermophilic archaeon Pyrococcus furiosus: sequence, transcription and analysis of the deduced amino acid sequence. Gene. 1993 Sep 30;132(1):143–148. doi: 10.1016/0378-1119(93)90527-a. [DOI] [PubMed] [Google Scholar]
  9. Flynn G. C., Beckers C. J., Baase W. A., Dahlquist F. W. Individual subunits of bacterial luciferase are molten globules and interact with molecular chaperones. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10826–10830. doi: 10.1073/pnas.90.22.10826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gore M. G. L-Glutamic acid dehydrogenase. Int J Biochem. 1981;13(8):879–886. doi: 10.1016/0020-711x(81)90013-6. [DOI] [PubMed] [Google Scholar]
  11. Heltzel A., Smith E. T., Zhou Z. H., Blamey J. M., Adams M. W. Cloning, expression, and molecular characterization of the gene encoding an extremely thermostable [4Fe-4S] ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 1994 Aug;176(15):4790–4793. doi: 10.1128/jb.176.15.4790-4793.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hudson R. C., Ruttersmith L. D., Daniel R. M. Glutamate dehydrogenase from the extremely thermophilic archaebacterial isolate AN1. Biochim Biophys Acta. 1993 Oct 6;1202(2):244–250. doi: 10.1016/0167-4838(93)90011-f. [DOI] [PubMed] [Google Scholar]
  13. Klump H., Di Ruggiero J., Kessel M., Park J. B., Adams M. W., Robb F. T. Glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Thermal denaturation and activation. J Biol Chem. 1992 Nov 5;267(31):22681–22685. [PubMed] [Google Scholar]
  14. Laderman K. A., Asada K., Uemori T., Mukai H., Taguchi Y., Kato I., Anfinsen C. B. Alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. J Biol Chem. 1993 Nov 15;268(32):24402–24407. [PubMed] [Google Scholar]
  15. Ma K., Robb F. T., Adams M. W. Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl Environ Microbiol. 1994 Feb;60(2):562–568. doi: 10.1128/aem.60.2.562-568.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  17. Ohshima T., Nishida N. Purification and properties of extremely thermostable glutamate dehydrogenases from two hyperthermophilic archaebacteria, Pyrococcus woesei and Pyrococcus furiosus. Biosci Biotechnol Biochem. 1993 Jun;57(6):945–951. doi: 10.1271/bbb.57.945. [DOI] [PubMed] [Google Scholar]
  18. Rehaber V., Jaenicke R. The low-temperature folding intermediate of hyperthermophilic D-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima shows a native-like cooperative unfolding transition. FEBS Lett. 1993 Feb 8;317(1-2):163–166. doi: 10.1016/0014-5793(93)81514-z. [DOI] [PubMed] [Google Scholar]
  19. Rice D. W., Hornby D. P., Engel P. C. Crystallization of an NAD+-dependent glutamate dehydrogenase from Clostridium symbiosum. J Mol Biol. 1985 Jan 5;181(1):147–149. doi: 10.1016/0022-2836(85)90334-1. [DOI] [PubMed] [Google Scholar]
  20. Robb F. T., Park J. B., Adams M. W. Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Biochim Biophys Acta. 1992 Apr 17;1120(3):267–272. doi: 10.1016/0167-4838(92)90247-b. [DOI] [PubMed] [Google Scholar]
  21. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  22. Sutherland K. J., Danson M. J., Hough D. W., Towner P. Expression and purification of plasmid-encoded Thermoplasma acidophilum citrate synthase from Escherichia coli. FEBS Lett. 1991 Apr 22;282(1):132–134. doi: 10.1016/0014-5793(91)80461-b. [DOI] [PubMed] [Google Scholar]
  23. Veronese F. M., Nyc J. F., Degani Y., Brown D. M., Smith E. L. Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase of Neurospora. I. Purification and molecular properties. J Biol Chem. 1974 Dec 25;249(24):7922–7928. [PubMed] [Google Scholar]
  24. West S. M., Price N. C. The unfolding and refolding of glutamate dehydrogenases from bovine liver, baker's yeast and Clostridium symbosium. Biochem J. 1988 Apr 1;251(1):135–139. doi: 10.1042/bj2510135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zwickl P., Fabry S., Bogedain C., Haas A., Hensel R. Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli. J Bacteriol. 1990 Aug;172(8):4329–4338. doi: 10.1128/jb.172.8.4329-4338.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES