Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):180–186. doi: 10.1128/aem.61.1.180-186.1995

Molecular characterization of a gene encoding extracellular serine protease isolated from a subtilisin inhibitor-deficient mutant of Streptomyces albogriseolus S-3253.

S Taguchi 1, A Odaka 1, Y Watanabe 1, H Momose 1
PMCID: PMC167273  PMID: 7887600

Abstract

An extracellular serine protease produced by a mutant, M1, derived from Streptomyces albogriseolus S-3253 that no longer produces a protease inhibitor (Streptomyces subtilisin inhibitor [SSI]) was isolated. A 20-kDa protein was purified by its affinity for SSI and designated SAM-P20. The amino acid sequence of the amino-terminal region of SAM-P20 revealed high homology with the sequences of Streptomyces griseus proteases A and B, and the gene sequence confirmed the relationships. The sequence also revealed a putative amino acid signal sequence for SAM-P20 that apparently functioned to allow secretion of SAM-P20 from Escherichia coli carrying the recombinant gene. SAM-P20 produced by E. coli cells was shown to be sensitive to SSI inhibition.

Full Text

The Full Text of this article is available as a PDF (376.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aretz W., Koller K. P., Riess G. Proteolytic enzymes from recombinant Streptomyces lividans TK24. FEMS Microbiol Lett. 1989 Nov;53(1-2):31–35. doi: 10.1016/0378-1097(89)90361-3. [DOI] [PubMed] [Google Scholar]
  2. Bibb M. J., Cohen S. N. Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol Gen Genet. 1982;187(2):265–277. doi: 10.1007/BF00331128. [DOI] [PubMed] [Google Scholar]
  3. Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
  4. Chang P. C., Kuo T. C., Tsugita A., Lee Y. H. Extracellular metalloprotease gene of Streptomyces cacaoi: structure, nucleotide sequence and characterization of the cloned gene product. Gene. 1990 Mar 30;88(1):87–95. doi: 10.1016/0378-1119(90)90063-w. [DOI] [PubMed] [Google Scholar]
  5. Dammann T., Wohlleben W. A metalloprotease gene from Streptomyces coelicolor 'Müller' and its transcriptional activator, a member of the LysR family. Mol Microbiol. 1992 Aug;6(16):2267–2278. doi: 10.1111/j.1365-2958.1992.tb01402.x. [DOI] [PubMed] [Google Scholar]
  6. Hattori M., Sakaki Y. Dideoxy sequencing method using denatured plasmid templates. Anal Biochem. 1986 Feb 1;152(2):232–238. doi: 10.1016/0003-2697(86)90403-3. [DOI] [PubMed] [Google Scholar]
  7. Henderson G., Krygsman P., Liu C. J., Davey C. C., Malek L. T. Characterization and structure of genes for proteases A and B from Streptomyces griseus. J Bacteriol. 1987 Aug;169(8):3778–3784. doi: 10.1128/jb.169.8.3778-3784.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kajiwara K., Fujita A., Tsuyuki H., Kumazaki T., Ishii S. Interactions of Streptomyces serine-protease inhibitors with Streptomyces griseus metalloendopeptidase II. J Biochem. 1991 Sep;110(3):350–354. doi: 10.1093/oxfordjournals.jbchem.a123584. [DOI] [PubMed] [Google Scholar]
  9. Kakinuma A., Sugino H., Moriya N., Isono M. Plasminostreptin, a protein proteinase inhibitor produced by Streptomyces antifibrinolyticus. I. Isolation and characterization. J Biol Chem. 1978 Mar 10;253(5):1529–1537. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Lampel J. S., Aphale J. S., Lampel K. A., Strohl W. R. Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326. J Bacteriol. 1992 May;174(9):2797–2808. doi: 10.1128/jb.174.9.2797-2808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  13. LeGendre N., Matsudaira P. Direct protein microsequencing from Immobilon-P Transfer Membrane. Biotechniques. 1988 Feb;6(2):154–159. [PubMed] [Google Scholar]
  14. Morihara K., Tsuzuki H. Comparison of the specificities of various serine proteinases from microorganisms. Arch Biochem Biophys. 1969 Feb;129(2):620–634. doi: 10.1016/0003-9861(69)90223-9. [DOI] [PubMed] [Google Scholar]
  15. Obata S., Taguchi S., Kumagai I., Miura K. Molecular cloning and nucleotide sequence determination of gene encoding Streptomyces subtilisin inhibitor (SSI). J Biochem. 1989 Mar;105(3):367–371. doi: 10.1093/oxfordjournals.jbchem.a122670. [DOI] [PubMed] [Google Scholar]
  16. Redenbach M., Flett F., Piendl W., Glocker I., Rauland U., Wafzig O., Kliem R., Leblond P., Cullum J. The Streptomyces lividans 66 chromosome contains a 1 MB deletogenic region flanked by two amplifiable regions. Mol Gen Genet. 1993 Nov;241(3-4):255–262. doi: 10.1007/BF00284676. [DOI] [PubMed] [Google Scholar]
  17. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  18. Silen J. L., Agard D. A. The alpha-lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo. Nature. 1989 Oct 5;341(6241):462–464. doi: 10.1038/341462a0. [DOI] [PubMed] [Google Scholar]
  19. Taguchi S., Kikuchi H., Kojima S., Kumagai I., Nakase T., Miura K., Momose H. High frequency of SSI-like protease inhibitors among Streptomyces. Biosci Biotechnol Biochem. 1993 Mar;57(3):522–524. doi: 10.1271/bbb.57.522. [DOI] [PubMed] [Google Scholar]
  20. Taguchi S., Kikuchi H., Suzuki M., Kojima S., Terabe M., Miura K., Nakase T., Momose H. Streptomyces subtilisin inhibitor-like proteins are distributed widely in streptomycetes. Appl Environ Microbiol. 1993 Dec;59(12):4338–4341. doi: 10.1128/aem.59.12.4338-4341.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Taguchi S., Kojima S., Kumagai I., Ogawara H., Miura K., Momose H. Isolation and partial characterization of SSI-like protease inhibitors from Streptomyces. FEMS Microbiol Lett. 1992 Dec 1;78(2-3):293–297. doi: 10.1016/0378-1097(92)90043-n. [DOI] [PubMed] [Google Scholar]
  22. Taguchi S., Kojima S., Terabe M., Miura K., Momose H. Comparative studies on the primary structures and inhibitory properties of subtilisin-trypsin inhibitors from Streptomyces. Eur J Biochem. 1994 Mar 15;220(3):911–918. doi: 10.1111/j.1432-1033.1994.tb18694.x. [DOI] [PubMed] [Google Scholar]
  23. Taguchi S., Kumagai I., Miura K. Comparison of secretory expression in Escherichia coli and Streptomyces of Streptomyces subtilisin inhibitor (SSI) gene. Biochim Biophys Acta. 1990 Jul 30;1049(3):278–285. doi: 10.1016/0167-4781(90)90098-m. [DOI] [PubMed] [Google Scholar]
  24. Taguchi S., Nishiyama K., Kumagai I., Miura K. Analysis of transcriptional control regions in the Streptomyces subtilisin-inhibitor-encoding gene. Gene. 1989 Dec 14;84(2):279–286. doi: 10.1016/0378-1119(89)90501-5. [DOI] [PubMed] [Google Scholar]
  25. Taguchi S., Yoshida Y., Kumagai I., Miura K., Momose H. Effect of downstream message secondary structure on the secretory expression of the Streptomyces subtilisin inhibitor. FEMS Microbiol Lett. 1993 Mar 1;107(2-3):185–189. doi: 10.1111/j.1574-6968.1993.tb06028.x. [DOI] [PubMed] [Google Scholar]
  26. Taguchi S., Yoshida Y., Matsumoto K., Momose H. Improved leader and putative terminator sequences for high-level production of Streptomyces subtilisin inhibitor in Escherichia coli. Appl Microbiol Biotechnol. 1993 Aug;39(6):732–737. doi: 10.1007/BF00164458. [DOI] [PubMed] [Google Scholar]
  27. Tange T., Taguchi S., Kojima S., Miura K., Momose H. Improvement of a useful enzyme (subtilisin BPN') by an experimental evolution system. Appl Microbiol Biotechnol. 1994 Apr;41(2):239–244. doi: 10.1007/BF00186966. [DOI] [PubMed] [Google Scholar]
  28. Tsuyuki H., Kajiwara K., Fujita A., Kumazaki T., Ishii S. Purification and characterization of Streptomyces griseus metalloendopeptidases I and II. J Biochem. 1991 Sep;110(3):339–344. doi: 10.1093/oxfordjournals.jbchem.a123582. [DOI] [PubMed] [Google Scholar]
  29. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  30. Zhu X. L., Ohta Y., Jordan F., Inouye M. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature. 1989 Jun 8;339(6224):483–484. doi: 10.1038/339483a0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES