Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):187–193. doi: 10.1128/aem.61.1.187-193.1995

Relationship between glycocalyx and povidone-iodine resistance in Pseudomonas aeruginosa (ATCC 27853) biofilms.

M L Brown 1, H C Aldrich 1, J J Gauthier 1
PMCID: PMC167274  PMID: 7887601

Abstract

Biofilm-embedded bacteria are generally more resistant to antimicrobial agents than are planktonic bacteria. Two possible mechanisms for biofilm resistance are that the glycocalyx matrix secreted by cells in a biofilm reacts with and neutralizes the antimicrobial agent and that the matrix creates a diffusion barrier to the antimicrobial agent. This study was therefore conducted to examine the relationship between glycocalyx and enhanced povidone-iodine resistance in biofilms of Pseudomonas aeruginosa (ATCC 27853). Biofilms were generated by inoculation of polycarbonate membranes with broth-grown cells and incubation of them on the surfaces of nutrient agar plates. The quantities of glycocalyx material per cell were found not to be significantly different between biofilm and planktonic samples. Transmission electron microscopy showed that the distributions of glycocalyx material around cells differed in biofilm and in planktonic samples. Addition of alginic acid to planktonic cell suspensions resulted in a slight increase in resistance to povidone-iodine, suggesting some neutralizing interaction. However, the iodine demands created by biofilm and planktonic samples of equivalent biomass were not significantly different and, therefore, do not explain the contrast in resistance observed between biofilm and planktonic samples. Examination of the relationship between cell death and biomass detachment from the glycocalyx matrix revealed that most cell death occurred in the fraction of biomass that detached from a biofilm during treatment. The overall rate of iodine diffusion through biofilms was not different from that of planktonic cells collected on a polycarbonate membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (462.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. L. Iodophor antiseptics: intrinsic microbial contamination with resistant bacteria. Infect Control Hosp Epidemiol. 1989 Oct;10(10):443–446. doi: 10.1086/645918. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. L., Vess R. W., Carr J. H., Bond W. W., Panlilio A. L., Favero M. S. Investigations of intrinsic Pseudomonas cepacia contamination in commercially manufactured povidone-iodine. Infect Control Hosp Epidemiol. 1991 May;12(5):297–302. doi: 10.1086/646342. [DOI] [PubMed] [Google Scholar]
  3. Anwar H., Dasgupta M. K., Costerton J. W. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother. 1990 Nov;34(11):2043–2046. doi: 10.1128/aac.34.11.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  5. Brown M. L., Gauthier J. J. Cell Density and Growth Phase as Factors in the Resistance of a Biofilm of Pseudomonas aeruginosa (ATCC 27853) to Iodine. Appl Environ Microbiol. 1993 Jul;59(7):2320–2322. doi: 10.1128/aem.59.7.2320-2322.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carson L. A., Petersen N. J., Favero M. S., Aguero S. M. Growth characteristics of atypical mycobacteria in water and their comparative resistance to disinfectants. Appl Environ Microbiol. 1978 Dec;36(6):839–846. doi: 10.1128/aem.36.6.839-846.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chester I. R., Gray G. W., Wilkinson S. G. Further studies of the chemical composition of the lipopolysaccharide of Pseudomonas aeruginosa. Biochem J. 1972 Jan;126(2):395–407. doi: 10.1042/bj1260395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251. [DOI] [PubMed] [Google Scholar]
  9. Costerton J. W., Irvin R. T., Cheng K. J. The bacterial glycocalyx in nature and disease. Annu Rev Microbiol. 1981;35:299–324. doi: 10.1146/annurev.mi.35.100181.001503. [DOI] [PubMed] [Google Scholar]
  10. Costerton J. W. The etiology and persistence of cryptic bacterial infections: a hypothesis. Rev Infect Dis. 1984 Sep-Oct;6 (Suppl 3):S608–S616. doi: 10.1093/clinids/6.supplement_3.s608. [DOI] [PubMed] [Google Scholar]
  11. Fassel T. A., Schaller M. J., Remsen C. C. Comparison of alcian blue and ruthenium red effects on preservation of outer envelope ultrastructure in methanotrophic bacteria. Microsc Res Tech. 1992 Jan 1;20(1):87–94. doi: 10.1002/jemt.1070200109. [DOI] [PubMed] [Google Scholar]
  12. Geesey G. G., Richardson W. T., Yeomans H. G., Irvin R. T., Costerton J. W. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol. 1977 Dec;23(12):1733–1736. doi: 10.1139/m77-249. [DOI] [PubMed] [Google Scholar]
  13. Goetz A., Muder R. R. Pseudomonas aeruginosa infections associated with use of povidone-iodine in patients receiving continuous ambulatory peritoneal dialysis. Infect Control Hosp Epidemiol. 1989 Oct;10(10):447–450. doi: 10.1086/645919. [DOI] [PubMed] [Google Scholar]
  14. Hoyle B. D., Jass J., Costerton J. W. The biofilm glycocalyx as a resistance factor. J Antimicrob Chemother. 1990 Jul;26(1):1–5. doi: 10.1093/jac/26.1.1. [DOI] [PubMed] [Google Scholar]
  15. McAvoy M. J., Newton V., Paull A., Morgan J., Gacesa P., Russell N. J. Isolation of mucoid strains of Pseudomonas aeruginosa from non-cystic-fibrosis patients and characterisation of the structure of their secreted alginate. J Med Microbiol. 1989 Mar;28(3):183–189. doi: 10.1099/00222615-28-3-183. [DOI] [PubMed] [Google Scholar]
  16. Nichols W. W., Evans M. J., Slack M. P., Walmsley H. L. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol. 1989 May;135(5):1291–1303. doi: 10.1099/00221287-135-5-1291. [DOI] [PubMed] [Google Scholar]
  17. Pyle B. H., McFeters G. A. Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces. Biofouling. 1990;2:113–120. doi: 10.1080/08927019009378137. [DOI] [PubMed] [Google Scholar]
  18. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sherbrock-Cox V., Russell N. J., Gacesa P. The purification and chemical characterisation of the alginate present in extracellular material produced by mucoid strains of Pseudomonas aeruginosa. Carbohydr Res. 1984 Dec 15;135(1):147–154. doi: 10.1016/0008-6215(84)85012-0. [DOI] [PubMed] [Google Scholar]
  20. Zamora J. L. Chemical and microbiologic characteristics and toxicity of povidone-iodine solutions. Am J Surg. 1986 Mar;151(3):400–406. doi: 10.1016/0002-9610(86)90477-0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES