Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):266–272. doi: 10.1128/aem.61.1.266-272.1995

Cloning, nucleotide sequence, and transcriptional analysis of the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene.

D Garmyn 1, T Ferain 1, N Bernard 1, P Hols 1, J Delcour 1
PMCID: PMC167282  PMID: 7887607

Abstract

Recombinant plasmids containing the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene (ldhL) were isolated by complementing for growth under anaerobiosis of an Escherichia coli lactate dehydrogenase-pyruvate formate lyase double mutant. The nucleotide sequence of the ldhL gene predicted a protein of 323 amino acids showing significant similarity with other bacterial L-(+)-lactate dehydrogenases and especially with that of Lactobacillus plantarum. The ldhL transcription start points in P. acidilactici were defined by primer extension, and the promoter sequence was identified as TCAAT-(17 bp)-TATAAT. This sequence is closely related to the consensus sequence of vegetative promoters from gram-positive bacteria as well as from E. coli. Northern analysis of P. acidilactici RNA showed a 1.1-kb ldhL transcript whose abundance is growth rate regulated. These data, together with the presence of a putative rho-independent transcriptional terminator, suggest that ldhL is expressed as a monocistronic transcript in P. acidilactici.

Full Text

The Full Text of this article is available as a PDF (573.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azevedo V., Sorokin A., Ehrlich S. D., Serror P. The transcriptional organization of the Bacillus subtilis 168 chromosome region between the spoVAF and serA genetic loci. Mol Microbiol. 1993 Oct;10(2):397–405. doi: 10.1111/j.1365-2958.1993.tb02671.x. [DOI] [PubMed] [Google Scholar]
  2. Barstow D. A., Clarke A. R., Chia W. N., Wigley D., Sharman A. F., Holbrook J. J., Atkinson T., Minton N. P. Cloning, expression and complete nucleotide sequence of the Bacillus stearothermophilus L-lactate dehydrogenase gene. Gene. 1986;46(1):47–55. doi: 10.1016/0378-1119(86)90165-4. [DOI] [PubMed] [Google Scholar]
  3. Bates E. E., Gilbert H. J. Characterization of a cryptic plasmid from Lactobacillus plantarum. Gene. 1989 Dec 21;85(1):253–258. doi: 10.1016/0378-1119(89)90491-5. [DOI] [PubMed] [Google Scholar]
  4. Bernard N., Ferain T., Garmyn D., Hols P., Delcour J. Cloning of the D-lactate dehydrogenase gene from Lactobacillus delbrueckii subsp. bulgaricus by complementation in Escherichia coli. FEBS Lett. 1991 Sep 23;290(1-2):61–64. doi: 10.1016/0014-5793(91)81226-x. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Chen J. D., Morrison D. A. Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for cloning of DNA from Streptococcus pneumoniae. Gene. 1988 Apr 15;64(1):155–164. doi: 10.1016/0378-1119(88)90489-1. [DOI] [PubMed] [Google Scholar]
  7. Chen L. H., Emory S. A., Bricker A. L., Bouvet P., Belasco J. G. Structure and function of a bacterial mRNA stabilizer: analysis of the 5' untranslated region of ompA mRNA. J Bacteriol. 1991 Aug;173(15):4578–4586. doi: 10.1128/jb.173.15.4578-4586.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clarke A. R., Atkinson T., Holbrook J. J. From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part I. Trends Biochem Sci. 1989 Mar;14(3):101–105. doi: 10.1016/0968-0004(89)90131-x. [DOI] [PubMed] [Google Scholar]
  9. Clarke A. R., Atkinson T., Holbrook J. J. From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part II. Trends Biochem Sci. 1989 Apr;14(4):145–148. doi: 10.1016/0968-0004(89)90147-3. [DOI] [PubMed] [Google Scholar]
  10. Clarke A. R., Wigley D. B., Barstow D. A., Chia W. N., Atkinson T., Holbrook J. J. A single amino acid substitution deregulates a bacterial lactate dehydrogenase and stabilizes its tetrameric structure. Biochim Biophys Acta. 1987 May 27;913(1):72–80. doi: 10.1016/0167-4838(87)90234-2. [DOI] [PubMed] [Google Scholar]
  11. Collins M. D., Williams A. M., Wallbanks S. The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol Lett. 1990 Aug;58(3):255–262. doi: 10.1016/s0378-1097(05)80004-7. [DOI] [PubMed] [Google Scholar]
  12. Contag P. R., Williams M. G., Rogers P. Cloning of a lactate dehydrogenase gene from Clostridium acetobutylicum B643 and expression in Escherichia coli. Appl Environ Microbiol. 1990 Dec;56(12):3760–3765. doi: 10.1128/aem.56.12.3760-3765.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Crow V. L., Pritchard G. G. Fructose 1,6-diphosphate-activated L-lactate dehydrogenase from Streptococcus lactis: kinetic properties and factors affecting activation. J Bacteriol. 1977 Jul;131(1):82–91. doi: 10.1128/jb.131.1.82-91.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Duncan M. J., Hillman J. D. DNA sequence and in vitro mutagenesis of the gene encoding the fructose-1,6-diphosphate-dependent L-(+)-lactate dehydrogenase of Streptococcus mutans. Infect Immun. 1991 Nov;59(11):3930–3934. doi: 10.1128/iai.59.11.3930-3934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Emory S. A., Belasco J. G. The ompA 5' untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. J Bacteriol. 1990 Aug;172(8):4472–4481. doi: 10.1128/jb.172.8.4472-4481.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eventoff W., Rossmann M. G., Taylor S. S., Torff H. J., Meyer H., Keil W., Kiltz H. H. Structural adaptations of lactate dehydrogenase isozymes. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2677–2681. doi: 10.1073/pnas.74.7.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ferain T., Garmyn D., Bernard N., Hols P., Delcour J. Lactobacillus plantarum ldhL gene: overexpression and deletion. J Bacteriol. 1994 Feb;176(3):596–601. doi: 10.1128/jb.176.3.596-601.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fitzsimons A., Duffner F., Curtin D., Brophy G., O'kiely P., O'connell M. Assessment of Pediococcus acidilactici as a Potential Silage Inoculant. Appl Environ Microbiol. 1992 Sep;58(9):3047–3052. doi: 10.1128/aem.58.9.3047-3052.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Garvie E. I. Bacterial lactate dehydrogenases. Microbiol Rev. 1980 Mar;44(1):106–139. doi: 10.1128/mr.44.1.106-139.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Graves M. C., Rabinowitz J. C. In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for "extended" promoter elements in gram-positive organisms. J Biol Chem. 1986 Aug 25;261(24):11409–11415. [PubMed] [Google Scholar]
  21. Haldimann A., Nicolet J., Frey J. DNA sequence determination and biochemical analysis of the immunogenic protein P36, the lactate dehydrogenase (LDH) of Mycoplasma hyopneumoniae. J Gen Microbiol. 1993 Feb;139(2):317–323. doi: 10.1099/00221287-139-2-317. [DOI] [PubMed] [Google Scholar]
  22. Hediger M. A., Frank G., Zuber H. Structure and function of L-lactate dehydrogenases from thermophilic and mesophilic bacteria, IV. The primary structure of the mesophilic lactate dehydrogenase from Bacillus subtilis. Biol Chem Hoppe Seyler. 1986 Sep;367(9):891–903. doi: 10.1515/bchm3.1986.367.2.891. [DOI] [PubMed] [Google Scholar]
  23. Hols P., Ferain T., Garmyn D., Bernard N., Delcour J. Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression. Appl Environ Microbiol. 1994 May;60(5):1401–1413. doi: 10.1128/aem.60.5.1401-1413.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Iwata S., Ohta T. Molecular basis of allosteric activation of bacterial L-lactate dehydrogenase. J Mol Biol. 1993 Mar 5;230(1):21–27. doi: 10.1006/jmbi.1993.1122. [DOI] [PubMed] [Google Scholar]
  25. Kim S. F., Baek S. J., Pack M. Y. Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene. Appl Environ Microbiol. 1991 Aug;57(8):2413–2417. doi: 10.1128/aem.57.8.2413-2417.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Llanos R. M., Harris C. J., Hillier A. J., Davidson B. E. Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase. J Bacteriol. 1993 May;175(9):2541–2551. doi: 10.1128/jb.175.9.2541-2551.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Llanos R. M., Hillier A. J., Davidson B. E. Cloning, nucleotide sequence, expression, and chromosomal location of ldh, the gene encoding L-(+)-lactate dehydrogenase, from Lactococcus lactis. J Bacteriol. 1992 Nov;174(21):6956–6964. doi: 10.1128/jb.174.21.6956-6964.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lundberg U., von Gabain A., Melefors O. Cleavages in the 5' region of the ompA and bla mRNA control stability: studies with an E. coli mutant altering mRNA stability and a novel endoribonuclease. EMBO J. 1990 Sep;9(9):2731–2741. doi: 10.1002/j.1460-2075.1990.tb07460.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mat-Jan F., Alam K. Y., Clark D. P. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol. 1989 Jan;171(1):342–348. doi: 10.1128/jb.171.1.342-348.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Melançon P., Leclerc D., Brakier-Gingras L. A deletion mutation at the 5' end of Escherichia coli 16S ribosomal RNA. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):98–103. doi: 10.1016/0167-4781(90)90148-u. [DOI] [PubMed] [Google Scholar]
  31. Minowa T., Iwata S., Sakai H., Masaki H., Ohta T. Sequence and characteristics of the Bifidobacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site. Gene. 1989 Dec 21;85(1):161–168. doi: 10.1016/0378-1119(89)90476-9. [DOI] [PubMed] [Google Scholar]
  32. Nilsson G., Belasco J. G., Cohen S. N., von Gabain A. Growth-rate dependent regulation of mRNA stability in Escherichia coli. Nature. 1984 Nov 1;312(5989):75–77. doi: 10.1038/312075a0. [DOI] [PubMed] [Google Scholar]
  33. Nomura M., Yates J. L., Dean D., Post L. E. Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7084–7088. doi: 10.1073/pnas.77.12.7084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ono M., Matsuzawa H., Ohta T. Nucleotide sequence and characteristics of the gene for L-lactate dehydrogenase of Thermus aquaticus YT-1 and the deduced amino acid sequence of the enzyme. J Biochem. 1990 Jan;107(1):21–26. doi: 10.1093/oxfordjournals.jbchem.a123004. [DOI] [PubMed] [Google Scholar]
  35. Ostendorp R., Liebl W., Schurig H., Jaenicke R. The L-lactate dehydrogenase gene of the hyperthermophilic bacterium Thermotoga maritima cloned by complementation in Escherichia coli. Eur J Biochem. 1993 Sep 15;216(3):709–715. doi: 10.1111/j.1432-1033.1993.tb18190.x. [DOI] [PubMed] [Google Scholar]
  36. Pease A. J., Wolf R. E., Jr Determination of the growth rate-regulated steps in expression of the Escherichia coli K-12 gnd gene. J Bacteriol. 1994 Jan;176(1):115–122. doi: 10.1128/jb.176.1.115-122.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pedersen S., Bloch P. L., Reeh S., Neidhardt F. C. Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell. 1978 May;14(1):179–190. doi: 10.1016/0092-8674(78)90312-4. [DOI] [PubMed] [Google Scholar]
  38. Petersen G. B., Stockwell P. A., Hill D. F. Messenger RNA recognition in Escherichia coli: a possible second site of interaction with 16S ribosomal RNA. EMBO J. 1988 Dec 1;7(12):3957–3962. doi: 10.1002/j.1460-2075.1988.tb03282.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Resnekov O., Melin L., Carlsson P., Mannerlöv M., von Gabain A., Hederstedt L. Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex. Mol Gen Genet. 1992 Aug;234(2):285–296. doi: 10.1007/BF00283849. [DOI] [PubMed] [Google Scholar]
  40. Resnekov O., Rutberg L., von Gabain A. Changes in the stability of specific mRNA species in response to growth stage in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8355–8359. doi: 10.1073/pnas.87.21.8355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rowley D. L., Pease A. J., Wolf R. E., Jr Genetic and physical analyses of the growth rate-dependent regulation of Escherichia coli zwf expression. J Bacteriol. 1991 Aug;173(15):4660–4667. doi: 10.1128/jb.173.15.4660-4667.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sakowicz R., Kallwass H. K., Parris W., Kay C. M., Jones J. B., Gold M. Threonine 246 at the active site of the L-lactate dehydrogenase of Bacillus stearothermophilus is important for catalysis but not for substrate binding. Biochemistry. 1993 Nov 30;32(47):12730–12735. doi: 10.1021/bi00210a023. [DOI] [PubMed] [Google Scholar]
  43. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sawers G., Böck A. Novel transcriptional control of the pyruvate formate-lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. J Bacteriol. 1989 May;171(5):2485–2498. doi: 10.1128/jb.171.5.2485-2498.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schroeder G., Matsuzawa H., Ohta T. Involvement of the conserved histidine-188 residue in the L-lactate dehydrogenase from Thermus caldophilus GK24 in allosteric regulation by fructose 1,6-bisphosphate. Biochem Biophys Res Commun. 1988 May 16;152(3):1236–1241. doi: 10.1016/s0006-291x(88)80417-0. [DOI] [PubMed] [Google Scholar]
  46. Taguchi H., Ohta T. D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. Cloning, sequencing, and expression in Escherichia coli of the D-lactate dehydrogenase gene of Lactobacillus plantarum. J Biol Chem. 1991 Jul 5;266(19):12588–12594. [PubMed] [Google Scholar]
  47. Taguchi H., Ohta T. Unusual amino acid substitution in the anion-binding site of Lactobacillus plantarum non-allosteric L-lactate dehydrogenase. Eur J Biochem. 1992 Nov 1;209(3):993–998. doi: 10.1111/j.1432-1033.1992.tb17373.x. [DOI] [PubMed] [Google Scholar]
  48. Thomas T. D., Ellwood D. C., Longyear V. M. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol. 1979 Apr;138(1):109–117. doi: 10.1128/jb.138.1.109-117.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Thomas T. D., Turner K. W., Crow V. L. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation. J Bacteriol. 1980 Nov;144(2):672–682. doi: 10.1128/jb.144.2.672-682.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  51. Waldvogel S., Weber H., Zuber H. Structure and function of L-lactate dehydrogenases from thermophilic and mesophilic bacteria. VII. Nucleotide sequence of the lactate dehydrogenase gene from the mesophilic bacterium Bacillus megaterium. Preparation and properties of a hybrid lactate dehydrogenase comprising moieties of the B. megaterium and B. stearothermophilus enzymes. Biol Chem Hoppe Seyler. 1987 Oct;368(10):1391–1399. doi: 10.1515/bchm3.1987.368.2.1391. [DOI] [PubMed] [Google Scholar]
  52. Wigley D. B., Gamblin S. J., Turkenburg J. P., Dodson E. J., Piontek K., Muirhead H., Holbrook J. J. Structure of a ternary complex of an allosteric lactate dehydrogenase from Bacillus stearothermophilus at 2.5 A resolution. J Mol Biol. 1992 Jan 5;223(1):317–335. doi: 10.1016/0022-2836(92)90733-z. [DOI] [PubMed] [Google Scholar]
  53. Yamada T., Carlsson J. Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol. 1975 Oct;124(1):55–61. doi: 10.1128/jb.124.1.55-61.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES