Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):357–362. doi: 10.1128/aem.61.1.357-362.1995

Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads.

W T Stringfellow 1, M D Aitken 1
PMCID: PMC167289  PMID: 7887615

Abstract

Polynuclear aromatic hydrocarbons (PAHs) typically exist as complex mixtures in contaminated soils, yet little is known about the biodegradation of PAHs in mixtures. We have isolated two physiologically diverse bacteria, Pseudomonas stutzeri P-16 and P. saccharophila P-15, from a creosote-contaminated soil by enrichment on phenanthrene as the sole carbon source and studied their ability to metabolize several other two- and three-ring PAHs. Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene served as growth substrates for both organisms, while fluorene was only cometabolized. We also studied the effects of these compounds on initial rates of phenanthrene uptake in binary mixtures. Lineweaver-Burk analysis of kinetic measurements was used to demonstrate competitive inhibition of phenanthrene uptake by all four compounds, suggesting that multiple PAHs are being transformed by a common enzyme pathway in whole cells. Estimates of the inhibition coefficient, Ki, are reported for each compound. The occurrence of competitive metabolic processes in physiologically diverse organisms suggests that competitive metabolism may be a common phenomenon among PAH-degrading organisms.

Full Text

The Full Text of this article is available as a PDF (230.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnsley E. A. Bacterial oxidation of naphthalene and phenanthrene. J Bacteriol. 1983 Feb;153(2):1069–1071. doi: 10.1128/jb.153.2.1069-1071.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer J. E., Capone D. G. Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. Appl Environ Microbiol. 1988 Jul;54(7):1649–1655. doi: 10.1128/aem.54.7.1649-1655.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumer M. Polycyclic aromatic compounds in nature. Sci Am. 1976 Mar;234(3):35–45. [PubMed] [Google Scholar]
  4. Boldrin B., Tiehm A., Fritzsche C. Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol. 1993 Jun;59(6):1927–1930. doi: 10.1128/aem.59.6.1927-1930.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boronin A. M., Filonov A. E., Gayazov R. R., Kulakova A. N., Mshensky Y. N. Growth and plasmid-encoded naphthalene catabolism of Pseudomonas putida in batch culture. FEMS Microbiol Lett. 1993 Nov 1;113(3):303–307. doi: 10.1111/j.1574-6968.1993.tb06531.x. [DOI] [PubMed] [Google Scholar]
  6. Cerniglia C. E. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol. 1984;30:31–71. doi: 10.1016/s0065-2164(08)70052-2. [DOI] [PubMed] [Google Scholar]
  7. Denome S. A., Stanley D. C., Olson E. S., Young K. D. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol. 1993 Nov;175(21):6890–6901. doi: 10.1128/jb.175.21.6890-6901.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foght J. M., Fedorak P. M., Westlake D. W. Mineralization of [14C]hexadecane and [14C]phenanthrene in crude oil: specificity among bacterial isolates. Can J Microbiol. 1990 Mar;36(3):169–175. doi: 10.1139/m90-030. [DOI] [PubMed] [Google Scholar]
  9. Foght J. M., Westlake D. W. Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can J Microbiol. 1988 Oct;34(10):1135–1141. doi: 10.1139/m88-200. [DOI] [PubMed] [Google Scholar]
  10. Grifoll M., Casellas M., Bayona J. M., Solanas A. M. Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring fission products. Appl Environ Microbiol. 1992 Sep;58(9):2910–2917. doi: 10.1128/aem.58.9.2910-2917.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grund E., Denecke B., Eichenlaub R. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl Environ Microbiol. 1992 Jun;58(6):1874–1877. doi: 10.1128/aem.58.6.1874-1877.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heitkamp M. A., Franklin W., Cerniglia C. E. Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol. 1988 Oct;54(10):2549–2555. doi: 10.1128/aem.54.10.2549-2555.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Menn F. M., Applegate B. M., Sayler G. S. NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl Environ Microbiol. 1993 Jun;59(6):1938–1942. doi: 10.1128/aem.59.6.1938-1942.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miyachi N., Tanaka T., Suzuki T., Hotta Y., Omori T. Microbial oxidation of dimethylnaphthalene isomers. Appl Environ Microbiol. 1993 May;59(5):1504–1506. doi: 10.1128/aem.59.5.1504-1506.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Monna L., Omori T., Kodama T. Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl Environ Microbiol. 1993 Jan;59(1):285–289. doi: 10.1128/aem.59.1.285-289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mueller J. G., Chapman P. J., Pritchard P. H. Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl Environ Microbiol. 1989 Dec;55(12):3085–3090. doi: 10.1128/aem.55.12.3085-3090.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Patel T. R., Gibson D. T. Bacterial cis-dihydrodiol dehydrogenases: comparison of physicochemical and immunological protperties. J Bacteriol. 1976 Dec;128(3):842–850. doi: 10.1128/jb.128.3.842-850.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Patel T. R., Gibson D. T. Purification and propeties of (plus)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J Bacteriol. 1974 Sep;119(3):879–888. doi: 10.1128/jb.119.3.879-888.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ROGOFF M. H., WENDER I. Methylnaphthalene oxidations by pseudomonads. J Bacteriol. 1959 Jun;77(6):783–788. doi: 10.1128/jb.77.6.783-788.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanseverino J., Applegate B. M., King J. M., Sayler G. S. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl Environ Microbiol. 1993 Jun;59(6):1931–1937. doi: 10.1128/aem.59.6.1931-1937.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schocken M. J., Gibson D. T. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Appl Environ Microbiol. 1984 Jul;48(1):10–16. doi: 10.1128/aem.48.1.10-16.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stringfellow W. T., Aitken M. D. Comparative physiology of phenanthrene degradation by two dissimilar pseudomonads isolated from a creosote-contaminated soil. Can J Microbiol. 1994 Jun;40(6):432–438. doi: 10.1139/m94-071. [DOI] [PubMed] [Google Scholar]
  23. Williams P. A., Catterall F. A., Murray K. Metabolism of naphthalene, 2-methylnaphthalene, salicylate, and benzoate by Pseudomonas PG: regulation of tangential pathways. J Bacteriol. 1975 Nov;124(2):679–685. doi: 10.1128/jb.124.2.679-685.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilson S. C., Jones K. C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut. 1993;81(3):229–249. doi: 10.1016/0269-7491(93)90206-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES