Abstract
The acidic exopolysaccharides (EPSs) from 63 strains of mushroom production-associated fluorescent pseudomonads which were mucoid on Pseudomonas agar F medium (PAF) were isolated, partially purified, and characterized. The strains were originally isolated from discolored lesion which developed postharvest on mushroom (Agaricus bisporus) caps or from commercial lots of mushroom casing medium. An acidic galactoglucan, previously named marginalan, was produced by mucoid strains of the saprophyte Pseudomonas putida and the majority of mucoid strains of saprophytic P. fluorescens (biovars III and V) isolated from casing medium. One biovar II strain (J1) of P. fluorescens produced alginate, a copolymer of mannuronic and guluronic acids, and one strain (H13) produced an apparently unique EPS containing neutral and amino sugars. Of 10 strains of the pathogen "P. gingeri," the causal agent of mushroom ginger blotch, 8 gave mucoid growth on PAF. The "P. gingeri" EPS also was unique in containing both neutral sugar and glucuronic acid. Mucoid, weakly virulent strains of "P. reactans" produced either alginate or marginalan. All 10 strains of the pathogen P. tolaasii, the causal agent of brown blotch of mushrooms were nonnmucoid on PAF. Production of EPS by these 10 strains plus the 2 nonmucoid strains of "P. gingeri" also was negative on several additional solid media as well as in two broth media tested. The results support our previous studies indicating that fluorescent pseudomonads are a rich source of novel EPSs.
Full Text
The Full Text of this article is available as a PDF (177.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
- Chan R., Lam J. S., Lam K., Costerton J. W. Influence of culture conditions on expression of the mucoid mode of growth of Pseudomonas aeruginosa. J Clin Microbiol. 1984 Jan;19(1):8–16. doi: 10.1128/jcm.19.1.8-16.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fett W. F., Osman S. F., Dunn M. F. Characterization of exopolysaccharides produced by plant-associated fluorescent pseudomonads. Appl Environ Microbiol. 1989 Mar;55(3):579–583. doi: 10.1128/aem.55.3.579-583.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fett W. F., Osman S. F., Fishman M. L., Siebles T. S. Alginate production by plant-pathogenic pseudomonads. Appl Environ Microbiol. 1986 Sep;52(3):466–473. doi: 10.1128/aem.52.3.466-473.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Govan J. R., Fyfe J. A., Jarman T. R. Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina. J Gen Microbiol. 1981 Jul;125(1):217–220. doi: 10.1099/00221287-125-1-217. [DOI] [PubMed] [Google Scholar]
- Govan J. R. Mucoid strains of Pseudomonas aeruginosa: the influence of culture medium on the stability of mucus production. J Med Microbiol. 1975 Nov;8(4):513–522. doi: 10.1099/00222615-8-4-513. [DOI] [PubMed] [Google Scholar]
- Grewal S. I., Rainey P. B. Phenotypic variation of Pseudomonas putida and P. tolaasii affects the chemotactic response to Agaricus bisporus mycelial exudate. J Gen Microbiol. 1991 Dec;137(12):2761–2768. doi: 10.1099/00221287-137-12-2761. [DOI] [PubMed] [Google Scholar]
- Johnson A. R. Improved method of hexosamine determination. Anal Biochem. 1971 Dec;44(2):628–635. doi: 10.1016/0003-2697(71)90252-1. [DOI] [PubMed] [Google Scholar]
- KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
- Ophir T., Gutnick D. L. A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol. 1994 Feb;60(2):740–745. doi: 10.1128/aem.60.2.740-745.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orgambide G., Montrozier H., Servin P., Roussel J., Trigalet-Demery D., Trigalet A. High heterogeneity of the exopolysaccharides of Pseudomonas solanacearum strain GMI 1000 and the complete structure of the major polysaccharide. J Biol Chem. 1991 May 5;266(13):8312–8321. [PubMed] [Google Scholar]
- Osman S. F., Fett W. F., Fishman M. L. Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. glycinea. J Bacteriol. 1986 Apr;166(1):66–71. doi: 10.1128/jb.166.1.66-71.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osman S. F., Fett W. F. Structure of an acidic exopolysaccharide of Pseudomonas marginalis HT041B. J Bacteriol. 1989 Mar;171(3):1760–1762. doi: 10.1128/jb.171.3.1760-1762.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osman S. F., Fett W. F. Structure of the acidic exopolysaccharide of Pseudomonas marginalis strain ATCC 10844. Carbohydr Res. 1993 Apr 7;242:271–275. doi: 10.1016/0008-6215(93)80040-l. [DOI] [PubMed] [Google Scholar]
- Osman S. F., Fett W. F. The structure of the acidic exopolysaccharide of Pseudomonas marginalis strains PF-05-2 and PM-LB-1. Carbohydr Res. 1990 May 15;199(1):77–82. doi: 10.1016/0008-6215(90)84094-b. [DOI] [PubMed] [Google Scholar]
- Rainey P. B. Phenotypic variation of Pseudomonas putida and P. tolaasii affects attachment to Agaricus bisporus mycelium. J Gen Microbiol. 1991 Dec;137(12):2769–2779. doi: 10.1099/00221287-137-12-2769. [DOI] [PubMed] [Google Scholar]
- Read R. R., Costerton J. W. Purification and characterization of adhesive exopolysaccharides from Pseudomonas putida and Pseudomonas fluorescens. Can J Microbiol. 1987 Dec;33(12):1080–1090. doi: 10.1139/m87-189. [DOI] [PubMed] [Google Scholar]
- Roberson E. B., Firestone M. K. Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp. Appl Environ Microbiol. 1992 Apr;58(4):1284–1291. doi: 10.1128/aem.58.4.1284-1291.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor R. L., Conrad H. E. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemistry. 1972 Apr 11;11(8):1383–1388. doi: 10.1021/bi00758a009. [DOI] [PubMed] [Google Scholar]